Biodegradation of Crude Oil and Petroleum Products by Crude Oil-degrading Microorganism

미생물을 이용한 원유 및 원유제품의 분해 특성

  • Published : 2002.06.01

Abstract

Two kinds of crude oil-degrading microorganisms from soil and one kind from sea were isolated and named strain Al32, strain F722 and strain OM1, respectively. These microorganism were identified Acinetobacter sp., Pseudomonas aeruginosa and Acinetobacter calcoaceticus, respectively. The optimum cultivation temperature of Acinetobacter sp. A132 and P. aeruginosa F722 was $35^{\circ}C$ and optimum growth pH was 8 and 9, respectively. The growth was the highest at 2.0% (w/v) substrate concentration when crude oil was only carbon source. The growth of A. calcoaceticus OM1 isolated from sea was the highest at 3.0% (w/v) of crude oil. In inspection of crude oil degradability, strain Al32 showed 5.49 g/L.day with Eleuthera (OMAN), 2.0% (w/v). P. aeruginosa F722 showed 1.19 g/L g/L.day with L-Zakum (AFRICA). In case of kerosene $nC_9\simnC_{20}$ and diesel $nC_9\simnC_{28}$, A. calcoaceticus OM1 was degraded 95% and 75%, respectively, for 7 days culture, and P. aeruginosa F722 was 80% after 10 days.

토양으로부터 2종류 그리고 해양으로부터 1종류의 원유 분해 미생물을 분리하였고, 이들을 strain A132, strain F722 그리고 strain OM1으로 각각 명명하였다. 이들 미생물은 Acinetobacter sp., Pseudomonas aeruginosa, Acinetobacter calcoaceticus로 각각 동정되었다. Strain Al32, F722의 최적배양 및 분해온도는 $35^{\circ}C$이고, 최적 생장 pH는 각각 8과 9에서 나타났다. 원유를 유일한 탄소 원으로 하여 배양을 하였을 때 원유농도 2.0% (w/v)에서 생장이 높았다. 한편, 해양에서 분리된 strain OM1은 pH 7, 원유농도 3.0% (w/v)에서 생장이 높았다. 원유 분해능 조사에서는 Eleuthera (OMAN) 원유를 2.0% (w/v) 기질로 하였을 때, strain Al32가 5.49g/L.day의 분해능을 나타내었다. 반면, L-Zakum (AFRICA) 원유에서는 strain F722가 1.19 g/L.day의 분해능을 보였다. 등유($nC_9\simnC_{20}$)와 경유 ($nC_{9}\simnC_{28}$)에 대하여 분해특성을 조사한 결과 strain OM1은 배양 7일 후 95, 75%를 각각 분해하였다. Strain F722는 배양10일 후 80%의 분해율을 나타내었다.

Keywords

References

  1. Sugiura, K., M. Ishihara, T. Shimauchi, and S. Harayama (1997), Physicochemical Properties and Biodegradability of Crude Oil, Environ, Sci. Technol. 31, 45-51 https://doi.org/10.1021/es950961r
  2. Sin, S. C. (1996), Petroleum and Safety, Petroleum and Lubrication 46-51
  3. Rho, S, C., C. H. Lee, and D, J. Jahng (1999), Nutritional Factors Affecting Efficiency of a Bioremediation Process for Diesel-Contaminated Soil, Kor. J, Biotechnol. Bioeng. 14, 503-510
  4. Ross, D. A. (1995), Introduction to Oceanography, p409, Harper Collins Press, United States
  5. Kim, H, J., B. J. Kim, J. Y. Kong, and H. S, Koo (2000), Isolation and Characterization Oil Degrading Bacteria from Southern Sea of Korea, Kor. J. Biotechnol. Bioeng. 15, 27-34
  6. Swannell, R P. J., K. Lee, and M. McDonagh (1996), Field Evaluations of Marine Oil Spill Bioremediation, Microbiol. Rev. 6, 342-365
  7. Venosa, A. D., M. T. Suidan, D. King, and B. A. Wrenn (1997), Use of hopane as a conservative biomarker for monitoring the bioremediation effectiveness of crude oil contaminating a sandy beach, J. Ind. Microbiol. Biotech. 18, 131-139 https://doi.org/10.1038/sj.jim.2900304
  8. Boehm, P. D., D. S. Page, E. S. Gilfiilan, A. E. Bence, W. A. Bums, and P. J. Mankiewicz (1998), Study of the Fates and Effects of the Exxon Valdez Oil Spill on Benthic Sediments in Two Bays in Prince William Sound, Alaska, 1, Study Design, Chemistry, and Source Fingerprinting, Environ. Sci. Technol. 32, 567-576 https://doi.org/10.1021/es9705598
  9. Douglas, G. S., A. E. Bence, R. C. Prince, S. J. Mcmillen, and E. I. Butler (1996), Environmental Stability of Selected Petroleum Hydrocarbon Source and Weathering Ratios, Environ. Sci. Technol. 30, 2332-2339 https://doi.org/10.1021/es950751e
  10. Wang, Z., M. Fingas and G. Sergy (1994), Study of 22-Year-Old Arrow Oil Samples Using Biomarker Compounds by $GC/MS$, Environ. Sci. Technol. 28, 1733-1746 https://doi.org/10.1021/es00058a027
  11. http://www.nmpa.go.kr/menu6.htm
  12. Foght, J., K. Semple, D. W. S. Westlake, S. Blenkinsopp, G. Sergy, Z. Wang, and M. Fingas (1998), Development of a standard bacterial consortium for laboratory efficacy testing of commercial freshwater oil spill bioremediation agents, J. Ind. Microbiol. Biotech. 21, 322-330 https://doi.org/10.1038/sj.jim.2900594
  13. Eve, R R (1992), Bioremediation of Petroleum Contaminated Sites, p121, C. K. Smoley. Press, New York
  14. Atlas, R. M. and C. E. Cerniglia (1995), Bioremediation of Petroleum Pollutants Diversity and environmental aspects of hydrocarbon biodegradation, BioSci. 45, 332-338 https://doi.org/10.2307/1312494
  15. Sohrabi, M. and A. Mogharei (1999), Some aspects of bioremediation of soil contaminated with petroleum hydrocarbons, Afinidad Lvi. 56, 307-312
  16. Cha, J. Y., S. Y. Chung, Y. S. Cho, Y. L. Choi, B. K. Kim, and Y. C. Lee (1999), Characterization of Crude Oil Degradation by Klebsiella sp. KCL-l Isolated from Sea Water, Kor. J. Appl. Microbiol. Biotechnol. 27, 452-457
  17. Atlas, R M. (1996), Principles of Microbiology, 2nd ed., p44, Wm. C. Brown. Press
  18. Huy, N. Q., S. Jin, K. Amada, M. Haruki, N. B. Huu, D. T. Hang, D. T. C. Ha, T. Imanaka, M. Morikawa, and S. Kanaya (1999), Characterization of PetroleumDegrading Bacteria from Oil-Contaminated Sites in Vietnam, J. Biosci. Bioeng. 88, 100-102 https://doi.org/10.1016/S1389-1723(99)80184-4
  19. Macnaughton, S. J., J. R Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White (1999), Microbial Population Changes during Bioremediation of an Experimental Oil Spill, Appl. Environ. Microbiol. 65, 3566-3574
  20. Sidorov, D. G., I. A. Borzenkov, R. R Ibatullin, E. I. Milekhina, I. T. Khramov, S. S. Belyaev, and M. V. Ivanov (1997), A Field Experiment on Decontamination of Oil- polluted Soil Employing Hydrocarbon-oxidizing Microorganisms, Appl. Biochem. Microbiol. 33, 441-445
  21. Haines, J. R, B. A. Wrenn, E. L. Holder, K. L. Strohmeier, R T. Herrington, and A. D. Venosa (1996), Measurement of hydrocarbon-degrading microbial populations by 96-well plate most-probable-number procedure, J. Ind. Microbiol. 16, 36-41 https://doi.org/10.1007/BF01569919
  22. Kapley, A., H. J. Purohit, S. Chhatre, R Shanker, T. Chakrabarti, and P. Khanna (1999), Osmotolerance and hydrocarbon degradation by a genetically engineered microbial consortium, Biore. Tech. 67, 241-245 https://doi.org/10.1016/S0960-8524(98)00121-7
  23. Syoko, K. N., S. Keiji, Y. I. Yukie, T. Haruhisa, V. Kasthuri, Y. Satoshi, T. Hiroki, and H. Shigeaki (1996), Construction of Bacterial Consortia That Degrade Arabian Light Crude Oil, J. Fermen. Bioeng. 82, 570-574 https://doi.org/10.1016/S0922-338X(97)81254-8
  24. Huesemann, M. H. (1995), Predictive Model for Estimating the Extent of Petroleum Hydrocarbon Biodegradation in Contaminated Soils, Environ. Sci. Technol. 29, 7-18 https://doi.org/10.1021/es00001a002
  25. Oh, K. T., Y. W. Lee, M. Kubo, S. J. Kim, and S. Y. Chung (2000), Isolation, identification and characterization of bacteria degrading crude oil, Kor. J. Soci. Environ. Eng. 22, 1851-1859