Physiological Functionality of Chinese Quince Wine and liquors

모과[Chaenomeles sinensis]주류의 생리기능성

  • 이종수 (배재대학교 유전공학과·생물의약연구센타) ;
  • 이대형 (배재대학교 유전공학과·생물의약연구센타) ;
  • 김재호 (배재대학교 유전공학과·생물의약연구센타) ;
  • 김나미 (한국담배인삼공사 중앙연구원) ;
  • 최종승 (배재대학교 원예학과)
  • Published : 2002.06.01

Abstract

Alcohol fermentation conditions for the production of Chinese quince wine were investigated. Ethanol was produced maximally when 5% Saccharomyces cerevisiae was added to Chinese quince iuices and fermented at $25^{\circ}C$ for 10 days. Physiological functionalities of the Chinese quince wines were determined and compared with those of Chinese quince liquors made by seating of Chinese quince in a mixture of commercial soju and 10% sugar for 30 days and 60 days. Angiotensin-converting enzyme inhibitory activity and fibrinolytic activity of the Chinese quince wine were 36.7% and 24.0 U, respectively. Tyrosinase inhibitory activity and nitrite scavenging activity of the Chinese quince liquors were 96.7% and 52.7%, respectively and it were similar to those of the Chinese quince liquor trade from soaking of 60 days. Chinese quince wine was showed strong antibacterial activities against Staphylococcus aureus (8.5 mm of clear zone) and Klebsiella pneumonia(4.0 mm of clear zone).

생리 기능성을 가진 고부가가치의 모과 술을 개발하기 위하여 먼저 최적 발효조건을 검토한 결과 모과 파쇄액($20^{\circ}$brix)에 Saccharomyces cerevisiae를 5% 접종하여 $25^{\circ}C$에서 10일간 발효시켰을 때 에탄올이 가장 많이 생성(10.6%) 되었다. 모과발효주의 생리기능성을 조사한 결과 ACE 저해활성과 혈전용해활성은 각각 36.7%와 24.0 U이었고 tyrosinase 저해활성과 아질산염 제거 활성은 각각 96.7%와 52.7%을 보여 모과 60일 침출추와 유사하였다. 모과 발효주의 기관지 질환에 관여하는 S. aureus, K. pneumonia에 대한 항균활성(투명환)은 각각 8.5 mm과 4.0 mm로 비교적 강하였다.

Keywords

References

  1. Lee, C. B. (1982) Forest Economics-mokchogangmok, Korean plant map. p 29, Hyangmunsa, Seoul
  2. Lim, K. B. (1975), Dongeubogam-medicinal tree cultivation, p306, Hyangmunsa, Seoul.
  3. Yoon, S. S. (1982), Korean food-history and cooking, p 212, Suhaksa, Seoul
  4. Kim, J. H., N. M. Kim, S. Y. Choi, and J. S. Lee (2000), Manufacture of Korean traditional liquors by using Dandelion(Taraxacum platycarpum), Kor. J. Appl. Microbiol. Biotechnol. 28, 342-346
  5. Cushman, D. W. and H. S. Cheung (1971), Spectrophotometic assay and properties of the angiotensin-converting enzyme of rabbit lung, Biochem. Pharm. 20, 1637- 1648 https://doi.org/10.1016/0006-2952(71)90292-9
  6. Fayek, K. I. and S. T. EI-Sayed (1980), Purification and properties of fibrinolytic enzyme from Bacillus subtilis, Zeit. fur Allgem. Mikrobiol. 20, 375-382 https://doi.org/10.1002/jobm.3630200603
  7. Kim, Y. T. (1995), Characteristics of fibrinolytic enzyme produced by Bacillus sp. isolated from chungkookjang Ph. D. Dissertation, Dept. of Food Sci. Technol., Sejong University, Seoul
  8. Marklund, S. and G. Marklund (1974), Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase, Eur. J. Biochem. 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  9. Blois, M. S. (1958), Antioxidant determination by the use of stable free radical, Nature, 191, 1199-1200 https://doi.org/10.1038/1811199a0
  10. Lee, 1. S., S. H. Yi, S. J. Kwon, C. Ahn, and J. Y. Yoo (1997), Enzymatic activities and physiological functionality of yeasts from traditional Meju, Kor. J. Appl. Microbiol. Biotechnol. 25, 448-452
  11. Sung, C. K. and S. H, Cho (1992), Studies on the purification and characteristics of tyrosinase from Diospyros kaki Thunb, Kor. Biochem. J. 25, 79-87
  12. Kato, H., I. E. Lee, N. V. Chuyen, S. B. Kim, and F. Hayase (1987), Inhibition of nitrosamine formation by nondialyzable melanoidins, Argic. BioI. Chem. 51, 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  13. Lee, I. S., M. C. Choi, and H. Y. Moon (2000), Effect of Platycodon grandiflorum A. DC extract on the bronchus diseases bacteria, Kor. J. Biotechnol. 15, 162-166
  14. Amerine, M. A. and E. B. Roessler(1975), Wines, their sensory evaluation, p.121, W. H. Freeman, Co., San Francisco
  15. Lee, C. H., S. K. Chae, J. K. Lee, and B. S. Park (1982), Quality Control of Food Industry, p.122-160, Yurim Munwha-sa, Seoul
  16. Howard Moskowitz (1988), Applied Sensory Analysis of Foods, p.44-71, CRC Press
  17. Seo, S. B., S. M. Han, J. H. Kim, N. M. Kim, and J. S. Lee (2001), Manufacture and physiological functionality of wines and Liquors by using Plum(Prunus salicina), Kor. J. Biotechnol. Bioeng. 16, 153-157
  18. Lee, D. H., J. H. Kim, N. M. Kim and J. S. Lee (2002), Manufacture and physiological functionality of korean traditional liquors by using chamomile(Matricaria chamomile), Kor. J. Food Sci. Technol. 34, 109-113
  19. Seo. S. B., J. H. Kim, N. M. Kim and J. S. Lee (2002), Manufacture and physiological functionality of traditional liquors by using acasia flower, Kor. J. Biotechnol. Bioeng. (in press)
  20. Kim, H. J., J. C. Lee, G. S. Lee, B. S. Jeon, N. M. Kim and J. S. Lee (2002), Manufacture and physiological functionality of Ginseng traditional liquors Kor. J. Ginseng Res. (in press)
  21. Oshima, G., H. Shimabukuro and K. Nagasawa (1979), Peptide inhibitors of angiotensin-I converting enzyme in digests of gelatin by bacterial collagenase, Biochem. Biophys. Acta. 566, 128-130 https://doi.org/10.1016/0005-2744(79)90255-9
  22. Maruyama, S., S. Miyoshi and H. Tanake (1989), Angiotensin-I converting enzyme inhibitors derived from Ficus Carica. Agric. BioI. Chem. 53, 2763-2765 https://doi.org/10.1271/bbb1961.53.2763
  23. Ariyosh, Y. (1993), Angiotensin converting enzyme inhibitors derived from food proteins. Trends Food Science Technol. 4, 139-144 https://doi.org/10.1016/0924-2244(93)90033-7