Preparation Of levan Oligosaccharides by Acid Hydrolysis and It Application in Growth of lactic Acid-producing Bacteria

산가수 분해법에 의한 레반 올리고당의 제조 및 유산군 생육촉진 효과 연구

  • 강태호 (경희대학교 생명과학부 식품공학전공) ;
  • 정성제 (경희대학교 생명과학부 식품공학전공) ;
  • 강순아 (경희대학교 동서의학대학원) ;
  • 강기효 (경희대학교 동서의학대학원) ;
  • 장은경 (한국생명공학연구원 (주)리얼바이오텍) ;
  • 김승환 (한국생명공학연구원 (주)리얼바이오텍) ;
  • 김철호 (한국생명공학연구원 (주)리얼바이오텍) ;
  • 이상기 (한국생명공학연구원 생물공정연구실) ;
  • 전억한 (한국생명공학연구원 생물공정연구실)
  • Published : 2002.04.01

Abstract

Levan oligosaccoharides and low molecular weight levin were produced from levin by acid hydrolysis and following column chromatography. Levan hydrolysis was progressed proportionally as increased incubation time. In terms of levan hydrolysis reaction, no differences were found from the sources of levan. Optimum hydrolysis conditions for the formation of levan oligosaccharides were, 0.38 M H$_2$S0$_4$; and incubation at 95$\^{C}$ for 4 min. The purified products were determined as the mixture of oligosaccharides (degree of polymerization (DP) of 3-6), Two of lactic acid-producing bacteria, Lactobacillus plantarum KCTC 3104 and Pediococcus pentosaceus KCTC 3507, were studied in vitro for their ability to metabolize levin oligosaccharides. Apparently, the growth of both cells were increased by levin oligosaccharide diet, compared with those of levan diets, suggesting that levan oligosaccharides may be beneficial in selectively growth of lactic acid-producing bacteria.

산가수분해법과 칼럼크로마토그라피법을 이용하여 레반 올리고당과 저분자량 레반을 생산하였다. 레반에 대한 산가수분해반응은 시간의존적으로 비례적으로 진행되었으며, 다른 미생물 유래의 레반을 사용시에도 동일한 결과를 나타내었다. 레반 올리고당의 제조를 위한 최적화된 조건은 5% 레반을 0.38 M 황산, 95$^{\circ}C$, 4분간 처리하였을 때였으며, 최종생산물로 중합도 3-6의 레반 올리고당을 얻었다. 생성된 레반을 올리고당을 탄소 원으로 이용하여 두 젖산 생성균주(Lactobacillus plantaurm KCTC 3104와 Pedioccccus pentosaceus KCTC3507)의 생장배지에 첨가하고 레반 자체를 첨가한 배지와 비교시, 뚜렷한 생육촉진효과와 pH 감소효과가 나타났다.

Keywords

References

  1. Psysiological Reviews v.81 Short-chain fatty acids and human colonic function: role of resistant starch and nonstarch polysaccharides Topping, D.;P. M. Clifton
  2. Enzymes for Carbohydrate Engineering Modulation of Bacillus amyloytic enzymes and production of branched oligosaccharides Cheong, T. K.;T. J. Kim;M. J. Kim;Y. D. Choi;I. C. Kim;J. W. Kim;K. H. Park;K. H. Park(ed);J. Robyt(ed);Y. D. Choi(ed)
  3. Adv. Appl. Microbiol. v.35 Microbial levan Han, Y. W. https://doi.org/10.1016/S0065-2164(08)70244-2
  4. Biotech. Lett. v.16 Enzymatic synthesis of levan by Zymomonas mobilis levansucrase overexpressed in Escherichia coli Song, K. B.;S. K. Rhee
  5. Biotech. Tech. v.11 Novel polyethylene glycol/levan aqueous two-phase system for protein partitioning Chung, B. H.;W. K. Kim;K. B. Song;C. H. Kim;S. K. Rhee https://doi.org/10.1023/A:1018475529976
  6. Cell Mol. Biol. v.31 Increase in cell perme abillity to a cytotoxic agent by the polysaccharide levan Leibovici, J.;Y. Stark
  7. J. Kor. Soc. Food Sci. Nutr. v.29 Physiological effects of levan oligosaccharide on growth of intestinal microflora Kang, S. K.;S. J. Park;J. D. Lee.;T. H. Lee
  8. Biopolymers v.5 Levan Rhee, S. K.;K. B. Song;C. H. Kim;B. S. Park,E. K. Jang;K. H. Jang;V. Erick(ed);D. B. Sophie(ed);S. Alexander(ed)
  9. FEMS Microbiol. Lett. v.182 Metabolization of -(2,6)-linked fructose-oligosaccharides by different bifidobacteria Marx, S. P.;S. Winkler;W. Hartmeier
  10. J. Nutr. v.127 Selected indigestible oligosaccharides affect large bowle mass, cecal and fecal short chain fatty acids pH and microflora in rat Campbell, J. M.;G. C. Fashey;B. W. Wolf https://doi.org/10.1093/jn/127.1.130
  11. Intern. J. of Biol. Marcromol. v.27 Molecular weight and antitumour activity of Zymomonas mobilis levans Calazans, C. M. T.;R. C. Lima;F. P. de Franca;C. E. Lopes https://doi.org/10.1016/S0141-8130(00)00125-2
  12. Biosci. Biotechnol. Biochem. v.58 Substrate specificity and suitable affinities offructofuranosidase from Bifidobacterium adolescentis G1 Muramatsu, K.;S. Onodera;M. Kikuchi;N. Shiomi https://doi.org/10.1271/bbb.58.1642