Continuous Degradation of azo dye by Immobilized laccase

고정화 laccase에 의한 azo 염료의 연속 분해

  • Kwon, Sin (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Ryu, Won-Ryul (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Cho, Moo-Hwan (School of Chemical Engineering & Technology, Yeungnam University)
  • 권신 (영남대학교 응용화학공학부) ;
  • 류원율 (영남대학교 응용화학공학부) ;
  • 조무환 (영남대학교 응용화학공학부)
  • Published : 2002.04.01

Abstract

Laccase produced from Trametes sp. was immobilized on CNBr-activated Sepharose-4B (CAS4B) and tested for degradation of azo dyes. Laccase was efficiently immobilized on CAS4B. Immobilization of laccase on CAS4B increased pH, thermal and proteolytic stabilities. Optimum pH and temperature of immobilized laccase were pH 3 and 40$\^{C}$, respectively as same as those of free laccase. The K$\_$m/($\mu$mol/ml) values of free and immobilized laccase for Reactive Blue 19 as the substrate were 0.34 and 2.07, respectively V$\_$max/($\mu$mol/mL$.$min) values of them were 0.12 and 0.1, respectively. In repeated batch reactions, conditions retained high stability and degradation of dye for immobilized laccase were pH 5 and 30$\^{C}$. HBT didn\\`t decrease highly activity of immobilized laccase. Immobilized laccase was very stable for degrading dyes continuously in a packed-bed reactor containing laccase immobilized on CAS4B. For continuous degradation of 100 $\mu$M Reactive Blue 19 and 50 $\mu$M Acid Red 57 in the presence of 0.1 mM HBT under optimum conditions, immobilized laccase retained 70% of degradation ability even after 30 hours.

Trametes sp.에서 생산되는 laccase는 CNBr-activated Sepharose-4B(CAS4B)에 고정화 되었고, 염료의 연속적인 분해를 위하여 테스트되었다. Laccase는 CAS4B에 효율적으로 고정화되었고, CAS4B에 고정화 된 laccase는 pH, 열, 단백질 구조적인 안정성 면에서 상당히 증가하였다. CAS4B에 고정화 된 accase의 최적 pH는 5, 온도는 4$0^{\circ}C$로서 free laccase와 비교하여 변화가 없었다 기질로서 Reactive Blue 19를 사용하였을 때 free laccase와 고정화 laccase의 $K_{m}$ ($\mu$mol/mL) 값은 각각 0.34와 2.0이었고,V$_{max}$($\mu$mol/mL.min) 값은 각각 0.12, 0.1이었다. Repeated-batch 반응에서 효소의 안정성과 높은 분해 효율 만족하는 조건은 pH 5, 3$0^{\circ}C$이였다. 또한 HBT에 의한 효소의 불활성은 크게 나타나지 않았다. Packed-bed reactor에서 최적으로 운전되었을 때 100 $\mu$M Reactive Blue 19과 0.1 mM HBT가 존재하는 50 $\mu$M Acid Red 57의 연속적인 분해에서 30시간 후에도 분해 효율이 70%로 유지되었다. 고정화 laccase는 Packed-bed reactor에서 azo 염료의 연속적인 분해를 매우 안정적으로 수행하였다.다.

Keywords

References

  1. The Handbook of Environmetal Chemistry v.3 Hutzinger, O.
  2. Chemosphere v.10 The assessment of the possible inhibitory effect of dyestuffs on aerobic wastewater bacteria;Experience with a screening test Brown, D. H.;H. R. Hitz;L. Shafer https://doi.org/10.1016/0045-6535(81)90025-4
  3. Textile dyes and dyeing equipment, classification, properties and environmental aspect Kullkarni, S. V.;C. D. Blackwell;A. L. Blackam;C. W. Stackhocese;M. W. Alexander
  4. Crit. Rev. Microbiol. v.18 The reduction of azo dyes by the intestinal microflore Chung, K. T.;E. Stevens https://doi.org/10.3109/10408419209114557
  5. Appl. Environ. Microbiol. v.58 Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus Paszczynski, A.;M. B. Pasti-Grigsby;S. Goszczynski;R. L. Crawford;D. L. Crawford
  6. Appl. Environ. Microbiol. v.58 Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium Spadaro, J. T.;M. H. Gold;V. Renganathan
  7. Biochemistry v.34 Lignin peroxidase-catalyzed oxidation of sulfonated azo dyes generates novel sulfopheny1 hydroperoxides Chivukula, M.;J. T. Spadaro;V. Renganathan https://doi.org/10.1021/bi00023a024
  8. Appl. Environ. Microbiol. v.56 Biodegradation of azo and heterocyclic dyes by phanerochaete chrysosporium Bumpus, J. A.;S. D. Aust
  9. J. Bacteriol. v.176 New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus Goszczynski, S.;A. Paszczynski;M. B. Pasti-Grigsby;R. L. Crawford;D. L. Crawford https://doi.org/10.1128/jb.176.5.1339-1347.1994
  10. Appl. Environ. Microbiol. v.58 Influence of aromatic substitution patterns on azo dye degradability by Streptomyces sp. and Phanerochaete chrysosporium Pasti-Grigsby, M. B.;A. Paszczynski;S. Goszczynski;D. L. Crawford;R. L. Crawford
  11. Biochem. Biophys. Res. Commun. v.178 Degradation of azo compounds by ligninase from Phanerochaete chrysosporium;involvement of veratryl alcohol Paszczynski, A.;R. L. Crawford https://doi.org/10.1016/0006-291X(91)90999-N
  12. Arch. Biochem. Biophys. v.312 Peroxidasecatalyzed oxidation of azo dyes;mechanism of disperse yellow 3 degradation Spadaro, J. T.;V. Renganathan https://doi.org/10.1006/abbi.1994.1313
  13. Biotechnol. Bioeng. v.26 Dephenolization of industrial waste water catalyzed by polyphenol oxidase Altow, S. C.;A. L. Bonadonna;A. M. Klibanov https://doi.org/10.1002/bit.260260607
  14. Sience v.221 Peroxidase-catalyzed removal of Phenols from coalconversion waste waters Klibanov, A. M.;T. M. Tu;K. P. Scott
  15. Environ. Sci Technol. v.20 Transformation of trace organic compounds in drinking water by enzymatic oxidative coupling Maloney, S. W.;J. Manem;J. Mallevialle;F. Fiessinger https://doi.org/10.1021/es00145a004
  16. Appl. Microbiol. Biotechnol. v.37 Covalent immobilisation of laccase on activated carbon for phenolic effluent treatment Davis, S.;R. G. Burns
  17. Appl. Microbiol. Biotechnol. v.32 Decolorization of phenolic effluent by soluble and immobilized phenol oxidase Davis, S.;R. G. Burns https://doi.org/10.1007/BF00164748
  18. Microb. Technol. v.8 Soluble and immobilized laccase for the transformation of substituted phenols Shuttleworth, K. L.;J. M. Bollag https://doi.org/10.1016/0141-0229(86)90108-0
  19. Appl. Microbiol. Biotechnol. v.29 Improvement in stability of an immobilized fungal laccase Leonowicz, A.;J. M. Sarkar;J. M. Bollag https://doi.org/10.1007/BF00939296
  20. Acta. Chem. Scand. v.29 Properties of the glycoprotein laccase immobilized by two methods Froehner, S. C.;K. Eriksson
  21. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding Bradford, M. M. https://doi.org/10.1016/0003-2697(76)90527-3
  22. Biotechnol. Bioeng. v.43 Immobilization of proteinase from the extremely thermophilic organism Thermus RT41A Wilson, S. A.;K. Peek;R. M. Daniel
  23. Biotechnol. Appl. Biochem. v.14 Authenticity and reconstitution of immobilized enzymes;characterization and denaturation;renaturation of glucomylase Ⅱ Gottschalk, N.;R. Jaenicke
  24. Trends Biotechnol. v.12 Can immobilization be exploited to modify enzyme activity Clark, D. S. https://doi.org/10.1016/0167-7799(94)90018-3
  25. Appl. Environ. Microbiol. v.65 Comparison of fungal laccase and redox mediator in Oxidation of a Nonphenolic lignin Model compound Li, K.;F. Xu;K. Eriksson