Characterization of Fe (III)-Reducing Bacteria Isolated from the Sediment of Chunho Reservoir

천호지 저질토에서 분리한 철환원세균의 특성

  • Published : 2002.06.01

Abstract

Microbial Fe (III) reduction is important for the biogeochemical cycle in the sediment of freshwater system. Also, the Fe (III) reducing mechanism make a model of oxidizing organic compounds and reducing toxic heavy metals, such as chrome or uranium. Thirty-seven strains which have Fe (III) reducing activity were isolated from sediments in lake Soyang and Chunho reservoir. The initial concentration of Fe (II) was the highest in sediments of lake Soyang. However, the highest Fe (III) reducing activity was shown in Chunho reservoir. All isolates were tested for Fe (III) reducing activity. Strains C2 and C3, which were isolated from sediments of Chunho reservoir, showed the highest activity. These strains were tested to see if they utilize various electron donors such as glucose, yeast extract, acetate, ethanol and toluene. Significantly, glucose and yeast extract were used as electron donors. Also these strains were conformed to use humid acid and nitrate as electron accepters. The 16S rRNA sequences of strains C2 and C3 were closely related to Aeromonas hydrophila with 95% similarity.

금속 이온 환훤 세균에 의한 철(III)환원은 생물지구화학적 물질순환(biogeochemical cycle)에 무척 중요하다. 이는 크롬(Ⅵ)이나 우라늄(Ⅵ)과 같은 독성 중금속 물질의 환원과 유기물질의 산화에 모텔이 되기 때문이다. 총 37균주의 Fe (III)환원 세균을 소양호와 천호지의 저질토에서 각각 분리하였다. 두 정점 중 초기 Fe (II)의 함유량이 가장 높았던 것은 소양호의 저질토였으나 Fe (III)환훤능은 반대로 가장 낮은 Fe (II)함유량을 보여 주었던 천호지가 높게 나타났다. 또한 분리한 균주 중 천호지에서 분리한 균주 C2와 C3가 가장 높은 Fe (III) 환훤능을 보여 주었으며 이 균주를 이용하여 다양한 전자 공여체의 이용 여부를 실험하였다. Glucose, yeast extract, acetate, ethanol, toluene등을 이용하여 실험한 결과 두 균주 모두 glucose와 yeast extract만을 전자 공여체로 이용하였다. 또한 전자 수용체로 토양에 광범위하게 존재하는 humid acid와 nitrate를 이용하였으며 수율이 높은 nitrate reduction에 의해 환원되었던 humic acid가 다시 재 산화되는 것을 관촬할수 있었다. 활성능이 우수한 균주 C2와C3의 165S rRNA유전자 분석 결과에 의하면 Aeromonas hydrophila와 95%의 유사성을 보여주었다.

Keywords

References

  1. 단국대학교 대학원 석사학위논문 소양호와 대청호에서의 종속영양세균에 의한 질소고정능 이일규
  2. Appl. Environ. Micobiol. v.56 Regulation of dissimilatory Fe (Ⅲ) reduction activity in Shewanella putrefaciens Arnold, R. G.;M.R. Hoffmann;T.J. Dischristana;F.W. Picardal
  3. Geoehim. Cosmochim. Acta v.53 Reactive iron in marine sediment Canfield, D.E. https://doi.org/10.1016/0016-7037(89)90005-7
  4. Appl. Environ. Microbiol. v.63 Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments Coates, J.D.;J. Woodward;J. Allen;P. Philp;D.R. Lovley
  5. Environ. Sci. Technol. v.20 Diagnostic trace-metal profiles in acetic lake sediment Cornwell, J.C. https://doi.org/10.1021/es00145a012
  6. Environ. Sci. Technol. v.26 Reduction of substituted nitrobenzens in aqucous solutions containing natural organic matter Dunnivant, F.M.;R.P. Schwarzenbach;D.L. Macalady https://doi.org/10.1021/es00035a010
  7. Appl. Environ. Microbiol. v.64 Localization and solubilization of the iron (Ⅲ) reductase of Geobacter sulfurreducens Gaspard, S.;F. Vazquez;C. Holliger
  8. Biology of Anaerobic Microorganisms Microbial reduction of manganese and iron Ghiorse, W.C.;A.J.B. Zehnder(ed.)
  9. Appl. Environ. Microbiol. v.62 Differential media for qunatitative recovery of waterborne Aeromonas hydrophila Handfield, M.;P. Simard;R. Letarte
  10. Arch. Microbiol. v.166 Synergistic iron reduction and citrate dissimilation by Shewanella alga and Aeromonas veronii Knight. V.;F. Caccavo;S. Wudyka;R. Blakemore https://doi.org/10.1007/s002030050383
  11. Nucleic acid techniques in bacterial systematics 16S/23S rRNA sequencing Lane, D.J.;E. Stackebrandt(ed.);M. Goodfellow(ed.)
  12. J. Bacteriol. v.178 Phylogenetic analysis of dissimilatory Fe (Ⅲ) reducing bacteria Lonergan, D.J.;H. Jenter;J.D. Coates;E.J.P. Phillips;T. Schmidt;D.R. Lovley https://doi.org/10.1128/jb.178.8.2402-2408.1996
  13. Microbiol. Rev. v.55 Dissimilatory Fe (Ⅲ) and Mn (Ⅳ) reduction Lovely, D.R.
  14. FEMS Microbiol. Rev v.20 Microbial Fe (Ⅲ) reduction in subsurface environments Lovely, D.R. https://doi.org/10.1111/j.1574-6976.1997.tb00316.x
  15. Appl. Environ. Microbiol. v.51 Organic matter mineralization with Reduction of ferric iron in anaerobic sediments Lovely, D.R.;E.J.P. Phillips
  16. Appl. Environ. Microbiol. v.54 Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese Lovely, D.R.;E.J.P. Phillips
  17. Appl. Environ. Microbiol. v.58 Reduction of uranium by desulfovibrio desulfuricans Lovely, D.R.;E.J.P. Phillips
  18. Appl. Environ. Microbiol. v.58 Letter to the editor: Acetate oxidation by dissimilatory Fe (Ⅲ) reducers Lovely, D.R.;E.J.P. Phillips, Jr.;Frank Caccavo;H.K. Nealson;C. Myers
  19. Appl. Environ. Microbiol. v.61 Fe (Ⅲ) and oxidation by Pelobacter carbinolicus Lovely, D.R.;E.J.P. Phillips;D.J. Lonergan;P.K. Widman
  20. Nature. v.382 Humic substances as electron acceptors for microbial respiration Lovely, D.R.;J.D. Coates;E.L. Blunt-Harris;E.J.P. Phillips;J. Woodward https://doi.org/10.1038/382445a0
  21. Environ Sci. Technol. v.32 Quinine moieties act as electron acceptors in the reduction of humic substances by humic-reducing microorganisms Scott, D.T.;D.M McKnight;E.L. Blunt-Harris;S.E. Kolesar;D.R. Lovely https://doi.org/10.1021/es980272q
  22. Humus chemistry: genesis, composition, reactions Stevenson, F.J.