Characterization of Quinolone-Resistant Clinical Isolates of Escherichia coil in Korea

  • Lee, Yeonhee (Department of Biology, Seoul Women′s University, Seoul 139-774) ;
  • Yoojung Oh (Department of Biology, Seoul Women′s University, Seoul 139-774) ;
  • Park, Seohyung (Department of Biology, Seoul Women′s University, Seoul 139-774) ;
  • Misun Ha (Department of Biology, Seoul Women′s University, Seoul 139-774)
  • Published : 2002.06.01

Abstract

Twenty-eight clinical isolates of Escherichia coil, composed of thirteen norfloxacin resistant isolates (MIC of >16${\mu}$g/ml), one intermediately resistant isolate (MIC of 8${\mu}$g/ml), and fourteen susceptible isolates (MIC of <4${\mu}$g/ml), were randomly selected to study the norfloxacin resistance mechanism and phylogeny in clinical isolates in Korea. Eleven nofloxacin resistant isolates and one susceptible isolate were multi-drug resistant (MDR). Every norfloxacin resistant isolate with MIC higher than 32${\mu}$g/ml had the same three mutations: Ser83\longrightarrowLeu and Asp87\longrightarrowAsn or Tyr in GyrA and Ser80\longrightarrowIle in ParC. Whereas a resistant isolate with MIC of 16${\mu}$g/ml had three mutations but Asp87 in GyrA was replaced with Gly instead of Asn. The intermediately resistant isolate had the same two mutations in GyrA but a different mutation in ParC, Glu84\longrightarrowLys. Among the susceptible isolates, two isolates with MIC of 4${\mu}$g/ml had one mutation: Ser83\longrightarrowiLeu in GyrA, and no mutation was found in the susceptible isolates. Resistant isolates showed higher efflux activity than the susceptible ones, with random amplification of polymorphic DNA (RAPD), six susceptible isolates form a separate group from the rest of the isolates.

Keywords

References

  1. Antimicrob. Agents Chemother v.31 Norfloxacin resistance in a clinical isolate of Escherichia coli Aoyama, H.;K. Sato;T. Kato;K. Hirai;S. Mitsuhashi https://doi.org/10.1128/AAC.31.10.1640
  2. Antimicrob. Agents Chemother. v.45 Interaction between DNA gyrase and quinolones: effects of alanine mutations at GyrA subunit residues Ser83 and Asp87 Barnard, F.M.;A. Maxwell https://doi.org/10.1128/AAC.45.7.1994-2000.2001
  3. Antibiot. Chemother. v.17 Mode of action of nalidixic acid Bauernfeind, A.
  4. Eur. J. Clin. Microbiol. Infect. Dis. v.19 Epidemiology of quinolone resistance of Klebsiella pneumoniae and Klebsiella oxytoca in Europe Brisse, S.;D. Milatovic;A.C. Fluit;J. Verhoef;F.J. Schmitz https://doi.org/10.1007/s100960050014
  5. Clin. Infect. Dis. v.20 Emergence of quinolone-resistant Escherichia coli bacteremia in neutropenic patients with cancer who have received prophylactic norfloxacin Carratala, J.;A. Fernandez-Sevilla;F. Tubau;M. Callis;F. Gudiol https://doi.org/10.1093/clinids/20.3.557
  6. J. Mol. Biol. v.258 DNA gyrase and topoisomerase Ⅳ on the bacterial chromosome: quinolone-induced DNA cleavage Chen C.R.;M. Malik;M. Snyder;K. Drlica https://doi.org/10.1006/jmbi.1996.0274
  7. J. Microbiol. v.39 Concentration of CCCP should be optimized to detect the efflux system in quinolone-susceptible Escherichia coli Cho, H.;Y. Oh;S. Park;Y. Lee
  8. Antimicob. Agents Chemother. v.32 Endogenous active efflux of norfloxacin in susceptible Escherichia coli Cohen, S.P.;E.C. Hooper;J.S. Wolfson;L.M. McMurry;S.B.J. Levy https://doi.org/10.1128/AAC.32.8.1187
  9. Antimicrob. Agents Chemother. v.33 Cross-resistance to fluoroquinolones in multipleantibiotic-resistant (Mar) Escherichia coli selected by tetracycline of chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction Cohen, S.P.;L.M. McMurry;D.C. Hooper;J.S. Wolfson;S.B. Levy https://doi.org/10.1128/AAC.33.8.1318
  10. N. Engl. J. Med. v.330 Escherichia coli resistant to fluoroquinolones in patients with cancer and neutropenia Cometta, A.;T. Calandra;J. Bille;M.P. Glauser https://doi.org/10.1056/NEJM199404283301717
  11. Antimicrob. Agents Chemother. v.33 Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones Cullen, M.E.;A.W. Wyke;R. Kuroda;L.M. Fisher https://doi.org/10.1128/AAC.33.6.886
  12. Antimicrob. Agents Chemother. v.45 Mutation in the DNA Gyrase A gene of Escherichia coli that expands the quinolone resistance-determining region Friedman, S.M.;L. Tao;K. Drlica https://doi.org/10.1128/AAC.45.8.2378-2380.2001
  13. Antimicrob. Agents Chemother v.37 Mutations in the gyrA gene of a highly fluoroquinolone-resistant clinical isolate of Escherichia coli Heisig, P.;H. Schedletzky;H. Falkenstein-Paul https://doi.org/10.1128/AAC.37.4.696
  14. Antimicrob. Agents Chemother. v.40 Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli Heisig, P.
  15. J. Biol. Chem. v.271 DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex Hiasa, H.;D.O. Yousef;K.J. Marains https://doi.org/10.1074/jbc.271.42.26424
  16. Antimicrob. Agents Chemother. v.31 Mutations producing resistance to norfloxcin in Pseudomonas aeruginosa Hirai, K.;S. Suzue;T. Irikura;S. Iyobe;S. Mitsuhashi https://doi.org/10.1128/AAC.31.4.582
  17. Rev. Infect. Dis. Suppl. v.5 Mode of action of the quinolone antimicrobial agents: review of recent information Hooper, D.C.;J.S. Wolfson
  18. Drugs 49(Suppl.2) Quinolone mode of action Hooper, D.C.
  19. J. Biol. Chem. v.262 Mapping the active site tyrosine of Escherichia coli DNA gyrase Horowitz, D.S.;J.C. Wang
  20. J. Biol. Chem. v.273 Conformational changes in DNA gyrase revealed by limited proteolysis Kampranis, S.C.;A. Maxwell https://doi.org/10.1074/jbc.273.35.22606
  21. Antimicrob. Agents Chemother. v.38 Emergence of fluoroquinolone-resistant Escherichia coli at a cancer center Kern, W.V.;E. Androf;M. Oethinger;P. Kern;J. Hacker;R. Marre https://doi.org/10.1128/AAC.38.4.681
  22. J. Biol. Chem. v.273 The mechanism of inhibiton of topoisomerase Ⅳ by quinolone antibacterials Khodursky, A.B.;N.R. Cozzarelli https://doi.org/10.1074/jbc.273.42.27668
  23. Proc. Natl. Acad. Sci. v.92 Topoisomerase Ⅳ is a target of quinolones in Escherichia coli Khodursky, A.B.;E.L. Zechiedrich;N.R. Cozzarelli https://doi.org/10.1073/pnas.92.25.11801
  24. Arch. Pharm. Res. v.19 Norfloxacin resistance mechanism of E. coli 11 and E. coli 101-clinical isolates of Escherichia coli in Korea Kim, K.;S. Lee S;Y. Lee https://doi.org/10.1007/BF02976378
  25. J. Mol. Biol. v.211 Neutron and light scattering studies of DNA gyrase and its complex with DNA Krueger, S.;G. Zaccai, A.;Wlodawer, J.;Langowski, M;O'Dea;A. Maxwell;M. Gellert https://doi.org/10.1016/0022-2836(90)90021-D
  26. Antimicrob. Agents. Chermother. v.40 Quinolone-resistant mutants of Escherichia coil DNA topoisomerase Ⅳ parC gene Kumagai, Y.;J.I. Kato;K. Hoshino;T. Akasaka;K. Sato;H. Ikeda
  27. Arch. Pharm. Res. v.21 Ofloxacin resistance mechanism in PA150 and PA300-clinical isolates of Pseudomonas aeruginosa in Korea Lee, S.;Y. Lee https://doi.org/10.1007/BF02976755
  28. Antimicrob. Agents Chemother v.44 Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa Maseda, H.H. Yoneyama;T. Nakae https://doi.org/10.1128/AAC.44.3.658-664.2000
  29. NCCLS. v.20 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard-Fifth Edition National Committee for Clinical Laboratory Standards
  30. J. Biol. Chem. v.271 Mutations in the B subunit of Escherichia coli DNA gyrase that affect ATP-dependent reactions O'Dea, M.H.;J.K. Tamura;M. Gellert https://doi.org/10.1074/jbc.271.16.9723
  31. Mol. Cells v.6 Norfloxacin resistance mechanism of Escherichia coli 59-a clinical isolate in Korea Park, S.;S. Lee;Y. Lee
  32. The SENTRY participants group. Int. J. Antimicrob. Agents v.12 Comparative activities of six different fluoroquinolones against 9,682 clinical bacterial isolates from 20 European university hospitals participating in the European SENTRY surveillance program Schmitz, F.J.;J. Verhoef;A.C. Fluit https://doi.org/10.1016/S0924-8579(99)00091-6
  33. Antibmicorb. Agents Chemother. v.34 In vitro emergence of quinolone-resistant mutations of Escherichia coli, Enterobacter cloacae, and Serratia marcescens Watanabe, M.;Y. Kotera;K. Yosue;M. Inoue;S. Mitsuhashi https://doi.org/10.1128/AAC.34.1.173
  34. Antimicrob. Agents Chemother. v.44 Characterization of fluoroquinolone resistance among veterinary isolates of avian Escherichia coli White, D.G.;L.J.V. Piddock;J.J. Maurer;S. Zhao;V. Ricci;S.G. Thayer https://doi.org/10.1128/AAC.44.10.2897-2899.2000
  35. Antimicrob. Chemother. v.37 A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complexes Willmott, C.J.;A. Maxwell https://doi.org/10.1128/AAC.37.1.126
  36. J. Antimicrob. Chemother. v.26 Outer membrane proteins responsible for the penetration of beta-lactams and quinolones in Pseudomonas aeruginosa Yamano, Y.;T. Nishikawa;Y. Komatsu https://doi.org/10.1093/jac/26.2.175
  37. J. Biol. Chem. v.275 Function of the membrane fusion protein, MexA, of the MexA, B-OprM efflux pump in Pseudomonas aeruginosa without an anchoring membrane Yoneyama, H.;H. Maseda;H. Kamiguchi;T. Nakae https://doi.org/10.1074/jbc.275.7.4628