Expression of Rotavirus Capsid Proteins VP6 and VP7 in Mammalian Cells Using Semliki Forest Virus-Based Expression System

  • Choi, Eun-Ah (College of Veterinary Medicine, Chungnam National University) ;
  • Kim, Eun (College of Veterinary Medicine, Chungnam National University) ;
  • Oh, Yoon-I (College of Veterinary Medicine, Chungnam National University) ;
  • Shin, Kwang-Soon (College of Veterinary Medicine, Chungnam National University) ;
  • Kim, Hyun-Soo (College of Veterinary Medicine, Chungnam National University) ;
  • Kim, Chul-Joong (College of Veterinary Medicine, Chungnam National University)
  • Published : 2002.06.01

Abstract

Rotaviruses are the world-wide leading causative agents of severe dehydrating gastroenteritis in young children and animals. The outer capsid glycoprotein VP7 and inner capsid glycoprotein VP6 of rotaviruses are highly antigenic and immunogenic. An SFV-based expression system has recently emerged as a useful tool for heterologous protein production in mammalian cells, exhibiting a much more efficient performance compared to other gene expression systems. Accordingly, the current study adopted an SFV-based expression system to express the VP7 of a group A human rotavirus from a Korean isolate, and the VP6 of a group B bovine rotavirus from a Korean isolate, in mammalian cells. The genes of the VP6 and VP7 were inserted into the SFV expression vector pSFV-1. The RNA was transcribed in vitro from pSFV-VP6 and pSFV-VP7 using SP6 polymerase. Each RNA was then electroporated into BHK-21 cells along with pSFV-helper RNA containing the structural protein gene without the packaging signal. The expression of VP6 and VP7 in the cytoplasm was then detected by immunocytochemistry. The recombinant virus was harvested by ultracentrifugation and examined under electron microscopy. After infecting BHK-21 cells with the defective viruses, the expressed proteins were separated by SDS-PAGE and analyzed by a Western blot. The results indicate that an SFV-based expression system fur the VP6 and VP7 of rotaviruses is an efficient tool for developing a diagnostic kit and/or preventive vaccine.

Keywords

References

  1. Bio/Technology v.11 Semliki forest virus expression system: Production of conditionally infecteious recombinant particles Berglund, P.;M. Sjoberg;B. J. Sheahan;G. J. Atkins;H. Garoff;P. Jestrom https://doi.org/10.1038/nbt0893-916
  2. J. Virol. v.43 Purification and characterization of bovine rotavirus Bican, P. J.;Cohen, A. Charpoloenne;R. Scherrer
  3. Science v.272 Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity Burns, J. W.;M. Siadat-Paiouth;A. A. Krishnaney;H. B. Greenberg https://doi.org/10.1126/science.272.5258.104
  4. Virology v.151 Two glycoproteins are produced from the rotavirus veutralization gene Chan, W. K.;M. E. Penaranda;S. E. Crawford;M. K. Estes https://doi.org/10.1016/0042-6822(86)90046-2
  5. Anal. Biochem. v.162 Single-step methop of RNA isolation by acid guanidium thiocyanate-phenol-chloroforum extraction Chomcynski, P;N. Sacchi
  6. Arch. Virol. Suppl. v.12 Rotavirus subunit vaccine Conner, M. E.;S. E. Crawford;C. Barone;C. O'Meal;Y. J. Zhou;F. Fernandez;A. Parwani;L. J. Saif;J. Cohen;M. K. Ester
  7. Microbiol. Rev. v.53 Rotavirus gene structure and function Ester, M. K.;J. Cohen
  8. Immunochemistry of Viruses: The Basis for Serodiagnosis and Vaccines Antigenic structure of rotaviruses Estes, M. K.;D. Y. Grahen
  9. J. Gen. Virol. v.73 Inhibition of rotavirus in vitro transcription by optimal concentrations of monoclonal antibodies specific for rotavirus VP6 Ginn, D. I.;R. L. Ward;V. V. Hampaarian;J. H. Hughes https://doi.org/10.1099/0022-1317-73-11-3017
  10. Molecular Biotechnology v.5 Manipulatian for vaccine construction Gregory, J. A.;B. J. Sheahan;P. Liljestrom https://doi.org/10.1007/BF02762410
  11. Virology v.214 Human papollomavirus type 16 capsid protein produced from recombinan semiki forest virue assemble into virus-like particles Heino, P.;J. Dillner;S. Schwartz https://doi.org/10.1006/viro.1995.0044
  12. Fields Virology, 3rd ed. v.2 Rotaviruses Kapikian, A. Z.;R. M. Chanock
  13. Arch. Virol. v.135 Inhibition of in vitro reconstitution of rotavirus transcriptionally active particles by anti-VP6 monoclonal antibodies Kohli, E.;P. Pothier;G. Tosser;J. Cohen;A. M. Sandino;E. Spencer https://doi.org/10.1007/BF01309778
  14. J. Virol. v.51 Monoclonal antibodies directed against different antigenic determinants of rotavirus Lambert, J. P.;P. Marbehant;D. Marissens;G. Zissis
  15. J. Virol. v.71 Infectious particle derived from semliki forest virus vectors encoding murine leukemia virus envelopes Lebedeva, I.;K. Fufita;A. Nihrane;J. Silver
  16. Biotechnology v.9 A new generation of animal cell expression vectors based on the semliki forest virus replicon Lilijestrom, P.;H. Garoff https://doi.org/10.1038/nbt1291-1356
  17. Current Protocols in Molecular Biology v.204 Mapping the subgroup epitopes of rotavirus protein VP6 Lopez, S.;R. Espinosa;H. B. Greenberg;C. F. Arias
  18. Arch. Virol. v.133 Biosynthesis and morphogenesis of group C rotavirus in swine testicular cells Nilsson, M.;C. H. von Bonsdorff;L. Svensson https://doi.org/10.1007/BF01309741
  19. Virology v.242 Assemby of viroplasm and virus-like particles of rotavirus by semliki forest cirus replicon Nilsson, M.;C. H. von Bonsdorff;L. Svensson https://doi.org/10.1006/viro.1997.8987
  20. Current Protocols in Molecular Biology Expression of protein using semliki forest vorus vector Liljestom, P.;H. Garoff;Ausubel, F. M.(ed.);Brent, R.(ed.);Kingston, R. E.(ed.);Moore, D. D.(ed.);Smith, J. A.(ed.);Seidman, J. G.(ed.);Struhl, K.(ed.)
  21. J. Virol. v.57 Identification of the two rotaviruses fenes determining neutralization specificities Offit, P. A.;G. Blavat
  22. J. Virol. v.71 Rotavirus virus-like particles administered mucosally induce protective immunity O'Neal, C. M.;S. E. Crawford;M. K. Esters;M. E. Conner
  23. Top. Microbiol. Immunol. v.85 Structure of rotavirus Prasad, B. V. V.;W. Chiu
  24. J. Virol. v.71 Infectious particle derived from semliki forest virus vectors encoding murine leukemia virus envelopes Sanger, F.;S. Nicken;A. R. coluson
  25. J. Infect, Dis. v.163 A field study of the safety and efficacy of two candidate rotavirus vaccines in a native American population Santosham, M.;G. W. Letson, M.;Wolff, R.;Reid, S.;Gahggan, R.;Adams, C.;Callahan;R. B. Sack;A. Z. Kapikian https://doi.org/10.1093/infdis/163.3.483
  26. J. Virol. v.66 Expression of the major capsid protein VP6 of group C rotavirus and synthesis of ehimeric single-shelled particle by using recombinant baculoviruses Tosser, G.;M. Labbe;M. Bremont;J. Cohen
  27. Pediatr. Infect. Dis. J. v.10 Evaluation of the M37 human rotavirus vaccine in 2- to 6-month-old infants Vesikari, T.;T. Ruuska;H. P. Koivu;K. Y. Green;J. Flores;A. Z. Kapikian https://doi.org/10.1097/00006454-199112000-00006
  28. Pediatr. Infect. Dis. J. v.11 Protective efficacy against serotype I rotavirus Diarrhea by live oral rhesus human reassertant rotavirus vaccines with human rotavirus VP7 serotype 1 or 2 specificity Vesikari, T.;T. Ruuska;K. Y. Green;J. Flores;A. Z. Kapikian https://doi.org/10.1097/00006454-199207000-00006
  29. Proc. Natl. Acad. Sci. v.92 Generation of cytotxic and humoral immune responses using non-replicative recombinant semliki forest virus Zhou, X.;P. Berlund;H. Zhao;P. Liljestrom;M. Jondal https://doi.org/10.1073/pnas.92.7.3009