Bioprocess Considerations for Production of Secondary Metabolites by Plant Cell Suspension Cultures

  • Chattopadhyay, Saurabh (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Farkya, Sunita (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Srivastava, Ashok K. (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology) ;
  • Bisaria, Virendra (Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology)
  • Published : 2002.05.01

Abstract

Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stage etc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.

Keywords

References

  1. Chemistry in Britain v.25 Cultured plant cells: The chemical factory within DiCosmo, F.;P. J. Facchini;M. M. Kraml
  2. Ann. New York Acad. Sci. v.665 Approaches to understanding and manipulating the biosynthetic potential of plant roots Flores, H. E.;W. R. Curtis https://doi.org/10.1111/j.1749-6632.1992.tb42584.x
  3. Biotechnol. Lett. v.23 Development of suspension culture of Podophyllum hexandrum for the production of podophyllotoxin Chattopadhyay, S.;A. K. Srivastava;S. S. Bhojwani;V. S. Bisaria https://doi.org/10.1023/A:1013704116860
  4. Large Scale Cell Culture Technology Plant cell culture Payne, G. F.;M. L. Shuler;P. Brodelius;B. K. Lydensen (ed.)
  5. Adv. Biochem. Eng./Biotechnol. v.72 Genetic modification of plant secondary metabolite pathways using transcriptional regulators Memelink, J.;J. W. Kijne;R. van der Heijden;R. Verpoorte https://doi.org/10.1007/3-540-45302-4_4
  6. Enzyme Microb. Technol. v.11 Plant cell reactors: A perspective Panda, A. K.;S. Mishra;V. S. Bisaria;S. S. Bhojwani https://doi.org/10.1016/0141-0229(89)90132-4
  7. Curr. Opin. Biotechnol. v.2 Large scale plant cell culture methods, applications and products Bisaria, V. S.;A. K. Panda https://doi.org/10.1016/S0958-1669(05)80140-5
  8. Plant Cell Tiss. Org. Cult. v.43 The problems associated with high biomass levels in plant cell suspensions Scragg, A. H. https://doi.org/10.1007/BF00052172
  9. J. Biotechnol. v.59 Plant cell suspension cultures: some engineering considerations Kieran, P. M.;P. F. MacLoughlin;D. M. Malone https://doi.org/10.1016/S0168-1656(97)00163-6
  10. Plant Cell Tiss. Org. Cult. v.24 The scale-up of plant cell cultures: engineering considerations Taticek, R. A.;M. Moo-Young;R. L. Legge https://doi.org/10.1007/BF00039742
  11. Plant Tissue Culture and Its Biotechnological Applications. Cultivation of plant tissue cultures in bioreactors and formation of secondary metabolites Wagner, F.;H. Vogelman;W. Barz(ed.);E. Reinhard(ed.);M. H.Zenk (ed.)
  12. Biotechnol. Bioeng. v.67 Technological problems in cultivation of plant cells at high density Tanaka, H.
  13. Biotechnol. Bioeng. v.24 Some properties of pseudocells of plant cells Tanaka, H. https://doi.org/10.1002/bit.260241122
  14. Biotechnol. Bioeng. v.39 Development of helical-ribbon impeller bioreactor for high density plant cell suspension culture Jolicoeur, M.;C. Chavarre;P. J. Carreau;J. Archambault https://doi.org/10.1002/bit.260390506
  15. J. Biosci. Bioeng. v.93 Production of podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor Chattopadhyay, S.;A. K. Srivastava;S. S. Bhojwani;V. S. Bisaria https://doi.org/10.1263/jbb.93.215
  16. Biotechnol. Bioeng. v.37 An investigation into the role of initial kLa on the growth and alkaloid accumulation by cultures of Catharanthus roseus Leckie, F.;A. H. Scragg;K. C. Cliffe https://doi.org/10.1002/bit.260370410
  17. World J. Microbiol. Biotechnol. v.8 Effects of surfactants on cell growth and pigment production in suspension cultures of Perilla frutescens Zhong, J. J.;T. Seki;S. Kinoshita;T. Yoshida https://doi.org/10.1007/BF01195826
  18. Biotechnol. Bioeng. v.44 Foaming and cell floatation in suspended plant cell cultures and the effect of chemical antifoams Wongasmuth, M.;P. M. Doran https://doi.org/10.1002/bit.260440411
  19. Biotechnol. Bioeng. v.28 Growth kinetics of Dioscorea deltoidea and Catharanthus roseus in batch culture Drapeau, D.;H. W. Blanch;C. R. Wilke https://doi.org/10.1002/bit.260281014
  20. Enzyme Microb. Technol. v.10 Effect of shear on the viability of plant cell suspensions Scragg, A. H.;E. J. Allan;F. Leckie https://doi.org/10.1016/0141-0229(88)90016-6
  21. Enzyme Microb. Technol. v.15 Effects of hydrodynamic stress on cultured plant cells: a literature survey Meijer, J. J.;H. J. G. ten Hoopen;K. C. A. M. Luyben;K. R. Libbenga https://doi.org/10.1016/0141-0229(93)90143-P
  22. Bioeng. v.45 Fluid shear effects on suspension cultures of Morinda citrifolia. Biotechnol Kieran, P. M.;H. J. O’Donnell;D. M. Malone;P. F. MacLoughlin https://doi.org/10.1002/bit.260450506
  23. Biotechnol. Bioeng. v.44 A quantitative analysis of shear effects on cell suspension and cell cultures of Perilla frutescens in bioreactors Zhong, J. J.;K. Fujiyama;T. Seki;T. Yoshida https://doi.org/10.1002/bit.260440512
  24. Adv. Biochem. Eng./Biotechnol. v.67 Effect of hydrodynamic and interfacial forces on plant cell systems Kieran, P. M.;D. M. Malone;P. F. MacLoughlin;T. Scheper(ed.);K. Schugerl(ed.);G. Kretzmer (ed.) https://doi.org/10.1007/3-540-47865-5_5
  25. Biometrika v.33 The design of optimum multifactorial experiments Plackett, R. L.;J. P. Burman https://doi.org/10.1093/biomet/33.4.305
  26. Biotechnol. Bioeng. v.26 Optimization of fermentation conditions for alcohol production Bowman, L.;E. Geiger https://doi.org/10.1002/bit.260261214
  27. Process Biochem. v.27 Medium development for xanthan production Roseiro, J. C.;M. E. Esgalhado;A. M. T. Collaco;A. N. Emery https://doi.org/10.1016/0032-9592(92)87005-2
  28. J. Biosci. Bioeng. v.91 Optimization of xylanase production by Melanocarpus albomyces IIS68 in solid-state fermentation using response surface methodology Narang, S.;V. Sahai;V. S. Bisaria https://doi.org/10.1263/jbb.91.425
  29. Experimental Design.(2nd ed.) Cochran, W. G.;G. M. Cox
  30. Experimental Design: A Chemometric Approach(1st ed.) Deming, S. N;S. L. Morgan
  31. Appl. Environ. Microbiol. v.45 Application of response surface methodology for evaluation of bioconversion experimental conditions Cheynier, V.;M. Feinberg;C. Chararas;C. Ducauze
  32. J. Food Protect. v.53 Optimization of lipase synthesis by Pseudomonas fluorescens by response surface methodology Harris, P. V.;S. L. Cuppett;L. B. Bullerman https://doi.org/10.4315/0362-028X-53.6.481
  33. J. Plant Physiol. v.135 Cell suspension cultures of Cassia didymobotrya: optimization of growth and secondary metabolite production by application of orthogonal design method Botta, B.;G. Dall’Olio;F. Ferrari;B. Monaceli;G. Pasqua;R. Scurria;D. G. Monache https://doi.org/10.1016/S0176-1617(89)80121-X
  34. Biotechnol. Bioeng. v.33 Studies on the growth and cardenolide production of Digitalis lanata tissue cultures Tuominen, U.;L. Toivonen;V. Kauppinen;P. Markkanen;L. Bjork https://doi.org/10.1002/bit.260330507
  35. Med. Fac. Landbouw Univ. Gent. v.57 Optimization of the medium composition for alkaloid production by Catharanthus roseus using statistical experimental designs Schlatmann, J. E.;H. J. G. ten Hoopen;J. J. Heijnen
  36. Appl. Biochem. Biotechnol. Optimization of culture parameters for production of podophyllotoxin in suspension culture of Podophyllum hexandrum Chattopadhyay, S.;A. K. Srivastava;V. S. Bisaria
  37. Plant Cell Tiss. Org. Cult. v.38 Ajmalicine production by cell cultures of Catharanthus roseus: from shake flask to bioreactor ten Hoopen, H. J. G.;W. M. van Gulik;J. E. Schlatman;P. R. H. Moreno;J. Vinke;J. J. Heijnen;R. Verpoorte https://doi.org/10.1007/BF00033865
  38. Planta Med. v.58 Cardenolide biotransformation by cultured Digitalis lanata cells: Semi-continuous cell growth and production of deacetyllanatoside-C in a 40-L stirred tank bioreactor Fulzele, D.;W. Kreis;E. Reinhard
  39. Process Biochem. v.35 High density cultivation of Panax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin Zhong, J. J.;F. Chen;W. W. Hu https://doi.org/10.1016/S0032-9592(99)00095-3
  40. Biotechnol. Bioeng. v.47 Taxol production in bioreactors: kinetics of biomass accumulation, nutrient uptake, and taxol production by cell suspensions of Taxus baccata Srinivasan, V.;L. Pestchanker;S. Moser;T. J. Hirasuma;R. A. Taticek;M. L. Shuler https://doi.org/10.1002/bit.260470607
  41. Plant Cell Rep. v.19 Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese Yew) using a novel bioreactor Son, S. H.;S. M. Choi;Y. H. Lee;K. B. Choi;S. R. Yun;J. K. Kim;H. J. Park;O. W. Kwon;E. W. Noh;J. H. Seon;Y. J. Park https://doi.org/10.1007/s002990050784
  42. Enzyme Microb. Technol. v.28 Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors Zhao, J., W. H. Zhu, and Q. Hu https://doi.org/10.1016/S0141-0229(01)00306-4
  43. Biotechnol. Bioeng. v.34 Semicontinuous cultivation of Digitalis lanata cells: production of β-methyldigoxin in a 300 l airlift bioreactor Reinhard, E.;W. Kreis;U. Barthlen;U. Helmbold https://doi.org/10.1002/bit.260340410
  44. Process Biochem. v.22 Large-scale cultivation of plant cells at high density: A review Tanaka H.
  45. Enzyme Microb. Technol. v.27 Scale-up study of suspension culture of Taxus chinensis cells for production of taxane diterpene Pan, Z. W.;H. Q. Wang;J. J. Zhong https://doi.org/10.1016/S0141-0229(00)00276-3
  46. Plant Tissue Culture as a Source of Biochemicals. Product cost analysis. Goldstein, W. E.;L. L. Lasure;M. B. Ingle;E. J. Staba (ed.)
  47. Biochem. Eng. J. v.4 Bioreactors for plant engineering: an outlook for further research Sajc, L.;D. Grubisic;G. V. Novakovic https://doi.org/10.1016/S1369-703X(99)00035-2
  48. Biotechnol. Bioeng. v.35 Cultivation of plant cells in stirred vessel: effect of impeller designs Hooker, B. S.;J. M. Lee;G. An https://doi.org/10.1002/bit.260350311
  49. Cell Culture and Somatic Cell Genetics of Plants v.5 Saponins (ginseng saponins) Furuya, T.;I. K. Vasil (ed.)
  50. J. Biotechnol. v.68 Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects Wu, J.;J. J. Zhong https://doi.org/10.1016/S0168-1656(98)00195-3
  51. J. Chem. Technol. Biotechnol. v.46 High density culture of Coptis japonica cells increases berberine production Matsubara, K.;S. Kitani;T. Yoshioka;T. Morimoto;Y. Fujita;Y. Yamada https://doi.org/10.1002/jctb.5000460806
  52. Plant Cell Culture Secondary Metabolism Toward Industrial Application Research on the production of useful compounds by plant cell cultures in Japan Hara, Y.;F. DiCosmo(ed.);M. Misawa(ed.)
  53. Appl. Biochem. Biotechnol. v.82 Assessment of various carbon sources and nutrient feeding strategies for Panax ginseng cell culture Wu, J.;K. P. Ho https://doi.org/10.1385/ABAB:82:1:17
  54. Process Biochem. v.35 Significant improvement of taxane production in suspension cultures of Taxus chinensis by sucrose feeding strategy Wang, H. Q.;J. T. Yu;J. J. Zhong https://doi.org/10.1016/S0032-9592(99)00094-1
  55. Plant Cell Rep. v.3 Increased formation of cinnamoyl putrescines by fedbatch fermentation of cell suspension cultures of Nicotiana tabacum Schiel, O.;J. K. Redecker;G. W. Piehl;J. Lehmann;J. Berlin https://doi.org/10.1007/BF00270221
  56. Appl. Microbiol. Biotechnol. v.44 High density cultivation of Anchusa officinalis in a stirred tank bioreactor with in situ filtration Su, W. W;F. Lei;N. P. Kao https://doi.org/10.1007/BF00169919
  57. Appl. Microbiol. Biotechnol. v.40 Large-scale production of anthocyanin by Aralia cordata cell suspension cultures Kobayashi, Y.;M. Akita;K. Sakamoto;H. Liu;T. Shigeoka;T. Koyano
  58. Enzyme Microb. Technol. v.28 Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors Zhao, J.;W. H. Zhu;Q. Hu https://doi.org/10.1016/S0141-0229(01)00306-4
  59. Biotechnol. Bioeng. v.39 Alkaloid production by plant cell cultures of Holarrhena antidysenterica: II Effect of precursor feeding and cultivation in stirred tank bioreactor Panda, A. K.;V. S. Bisaria;S. Mishra https://doi.org/10.1002/bit.260391009
  60. Biotechnology in Plant Science. Relevance to Agriculture in the Eighties Production of shikonin by plant cell cultures Tabata. M.;Y. Fujita M. Zaitlin(ed.);P. Day(ed.);A. Hollaender(ed.)
  61. Process Biochem. v.35 High density cultivation of Panax notoginseng cells in stirred tank bioreactors for the production of ginseng biomass and ginseng saponin Zhong, J. J.;F. Chen;W. W. Hu https://doi.org/10.1016/S0032-9592(99)00095-3
  62. Process Biochem. v.37 Impact of conditioned medium on cell cultures of Panax notoginseng in an airlift bioreactor Woragidbumrung, K.;P. S. Tang;H. Yao;J. Han;S. Chauvatcharin;J. J. Zhong https://doi.org/10.1016/S0032-9592(01)00197-2
  63. Enzyme Microb. Technol. v.21 Hyperproduction of ginseng saponin and polysaccharide by high density cultivation of Panax notoginseng cells Zhang, Y. H.;J. J. Zhong https://doi.org/10.1016/S0141-0229(96)00224-4
  64. Enzyme Microb. Technol. v.17 High-density cultivation of Perilla frutescens cell suspensions for anthocyanin production: effects of sucrose concentration and inoculum size Zhong, J. J.;T. Yoshida https://doi.org/10.1016/0141-0229(95)00033-X
  65. Enzyme Microb. Technol. v.29 Enhanced production of paclitaxel by semi-continuous batch process (SCBP) in suspension culture of Taxus chinensis Choi, H. K.;J. H. Yun;S. I. Kim;J. S. Son;H. R. Kim;J. H. Kim;H. J. Choi;S. S. Hong https://doi.org/10.1016/S0141-0229(01)00427-6
  66. Technol. v.19 Kinetics of taxol production and nutrient use in suspension cultures of Taxus cuspidata in shake flasks and a Wilson-type bioreactor. Enzyme Microb Pestchanker, L. J.;S. C. Roberts;M. L. Shuler
  67. Biotechnol. Lett. v.12 Enhancement of producing catharanthine by suspension growth of Catharanthus roseus Park, H. H.;S. K. Choi;J. K. Kang;H. Y. Lee https://doi.org/10.1007/BF01030760
  68. Plant Tissue cultures Large scale production of tobacco cells by continuous cultivation Hashimoto, T.;S. Azechi;S. Sugita;K. Suzuki;A. Fujiwara (ed.)
  69. Appl. Microbiol. Biotechnol. v.56 Propionic acid production in an in situ cell retention bioreactor Goswami, V.;A. K. Srivastava https://doi.org/10.1007/s002530000582
  70. Hort. Sci. v.21 Spin filter bioureactor technology as applied to industrial plant propagation Wheat, D.;R. P. Bondaryk;J. Nystrom
  71. Enz. Microbial Technol. v.12 Growth of Catharanthus roseus suspension for maximum biomass and alkaloid accumulation Scragg, A. H.;S. Ashton;A. York;P. Bond;G. Stephan-Sarkissan;D. Grey https://doi.org/10.1016/0141-0229(90)90101-U
  72. J. Biotechnol. v.16 Two stage cultivation of Digitalis lanata cells: semicontinuous production of deacetyl lantoside C in 20 litre air-lift bioreactor Kries, W.;E. Reinhard https://doi.org/10.1016/0168-1656(90)90070-R
  73. J. Biotechnol. v.16 Two stage culture for the production of berberine in cell suspension culture of Thalictrum rugosum Kim, D. I.;H. Pederson;C. C. Chin https://doi.org/10.1016/0168-1656(90)90043-B
  74. Biotechnol. Bioeng. v.41 A structured model describing carbon and phosphate limited growth of Catharanthus roseus plant cell suspensions in batch and chemostat cultures van Gulik, W. M.;H. J. G. ten Hoopen;J. J. Heijnen https://doi.org/10.1002/bit.260410803
  75. Biotechnol. Bioeng. v.35 Optimal temperature control for a structured model of plant cell culture Bailey, C. M.;H. Nicholson https://doi.org/10.1002/bit.260350306
  76. Biotechnol. Bioeng. v.57 Polysaccharide production by plant cells in suspension: experiments and mathematical modeling Glicklis, R.;D. Mills;D. Sitton;W. Stortelder;J. C. Merchuk https://doi.org/10.1002/(SICI)1097-0290(19980320)57:6<732::AID-BIT10>3.0.CO;2-9
  77. Plant Cell Tiss. Org. Cult. v.24 Optimization of sucrose and inorganic nitrogen concentrations for somatic embryogenesis of birch (Betula pendula Roth.) callus cultures: a statistical approach Nuutila, A. M.;U. Kurten;V. Kauppinen https://doi.org/10.1007/BF00039733
  78. Enzyme Microb. Technol. v.15 Computer-aided modeling and optimization for capsaicinoid production by immobilized Capsicum frutescens cells Suvarnalatha, G.;N. Chand;G. A. Ravishanker;L. V. Venkataraman https://doi.org/10.1016/0141-0229(93)90074-C
  79. Biotechnol. Bioeng. v.35 Development of a strategy to control the dissolved concentration of oxygen and carbon dioxide at constant shear in a plant cell bioreactor Smith, J. M.;S. W. Davison;G. F. Payne https://doi.org/10.1002/bit.260351104
  80. Plant Cell Tiss. Org. Cult. v.56 Effects of alkaloid precursor feeding and elicitation on the accumulation of secologanin in a Catharanthus roseus cell suspension culture Contin, A.;R. van der Heijden;R. Verpoorte https://doi.org/10.1023/A:1006257125191
  81. Plant Cell Rep. v.12 Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell suspension cultures of Catharanthus roseus Moreno, P. R. H.;R. van der Heijden;R. Verpoorte
  82. Plant Cell Culture Secondary Metabolism Toward Industrial Application Production of paclitaxel and related taxoids in cell cultures of Taxus cuspidata: perspectives for industrial applications Fett-Neto, A. G.;F. DiCosmo;F. DiCosmo(ed.);M. Misawa(ed.)
  83. Appl. Microbiol. Biotechnol. v.27 Permeabilization of plant cells for release of intracellularly stored products: Viability studies Brodelius, P. E.
  84. Biotechnol. Prog. v.17 Enhanced taxol production and release in Taxus chinensis cell suspension cultures with selected organic solvents and sucrose feeding Wang, C., J. Wu;X. Mei https://doi.org/10.1021/bp0001359
  85. Biotechnol. Bioeng. v.30 Rules for the optimization of biocatalysis in organic solvents Laane, C.;S. Boeren;K. Vos;C. Veeger https://doi.org/10.1002/bit.260300112
  86. Biotechnol. Tech. v.4 The influence of various organic solvents on the respiration of free and immobilized cells of Tagetes minuta Buitelaar, R. M.;M. H. Vermue;J. E. Schlatmann;J. Tramper https://doi.org/10.1007/BF00159388
  87. Enzyme Microb. Technol. v.13 Growth and thiophene production by hairy root cultures of Tagetes patula in various twoliquid- phase bioreactors Buitelaar, R. M.;A. A. M. Langenhoff;R. Heidstra;J. Tramper https://doi.org/10.1016/0141-0229(91)90007-W