Numerical Analysis of Incompressible and Compressible Flow Around a Butterfly Valve

버터플라이 벨브 주위의 비압축성 및 압축성유동 특성에 대한 수치해석

  • 이종욱 (호남석유화학 개발연구실) ;
  • 이두환 (아주대학교 기계공학과 대학원) ;
  • 최윤호 (아주대학교 기계 및 산업공학부)
  • Published : 2002.03.01

Abstract

In this paper, incompressible and compressible flow characteristics around the butterfly valve have been investigated. In order to simplify the problem, a flat disk valve with various valve disk angles and pressure ratios is considered in the present calculations. It was found that as the disk angle increases, the stagnation point on the front surface of the disk moves to the center of the surface and the inflow velocity decreases. The maximum flow velocity occurs at the downstream of throat because of the formation of vents contracta. As the pressure ratio decreases, compressibility effects increase and the jet formed between the throttle body wall and the disk edge becomes supersonic. This flow also builds up as a shock cell structure. The increase of disk angle and pressure ratio makes the mass flow at the inlet decrease, while the increase of disk angle and the decrease of pressure ratio make the pressure loss coefficient increase.

본 연구에서는 butterfly valve주위의 비압축성 및 압축성유동 특성을 수치해석을 통하여 조사하였다. 밸브는 문제를 단순화시키기 위하여 평판 디스크로 간주하였으며, 다양한 디스크 각도 및 압력비 변화에 대한 계산을 수행하였다. 각도가 증가함에 따라 디스크 상류면의 정체점은 디스크의 중심으로 이동하는 것을 볼 수 있었고, 입구공기의 유입 속도는 감소함을 볼 수 있었다. 최고 유속은 디스크와 벽면사이에 형성되는 vena contracta 효과에 의해 생기는 목의 하류에서 형성됨을 볼 수 있었다. 압력비를 감소함에 따라 압축성 효과는 증대되며 유동이 초음속화 되면서 생성되는 강한 wall jet에 의해 shock cell structure가 형성되는 것을 볼 수 있었다. 입구유량은 디스크 각도와 압력비의 증가에 따라서 감소하며, 압력손실계수는 디스크 각도의 증가 및 압력비의 감소에 따라 증가하였다.

Keywords

References

  1. ASME J. Fluid Engineering v.107 An Investigation of Compressible Flow Characteristics of Butterfly Valves Addy, A.L.;Morris, J.C.;Dutton, J.C. https://doi.org/10.1115/1.3242522
  2. ASME J. Fluid Engeneering v.111 Compressible Flow-field Characteristics of Butterfly Valves Morris, M.J.;Dutton, J.C.
  3. ASME J. Fluid Engineering v.11 Performance of Butterfly Valve as a Flow Controller Eom, K.
  4. Proceedings of the 5th Asian Congress of Fluid Mechanics v.2 Effects of Compressibility on Flow Pedictions around a Butterfly Valve Milton, B.E.;Kim, C.H.
  5. ASME Winter Meeting, FED v.69 Numerical Simulation of the Three-Dimensional Flow around a Butterfly Valve Lacor, C.;Hirsh, C.
  6. Proceedings of the 1st European CFD Conference v.1 Three-Dimensional Flow Overlapping Grids for International Combustion Engine Geometry Tu, J.Y.;Fuchs, L.
  7. 한국자동차학회, 춘계학술대회 Butterfly Valves 주위의 3차원 유동에 대한 유한요소해 심은보;장근식
  8. AIAA Journal v.23 Implicit Upwind Methods for the Compressible Navier-Stockes Equations Coakley, T.J. https://doi.org/10.2514/3.8923
  9. AIAA Journal v.26 Computation of Three Dimensional Viscous Linear Cascade Flows Choi, D.;Knight, C.J. https://doi.org/10.2514/3.10066
  10. AIAA Journal v.20 Prediction of Channel and Boundary-Layer Flows with a Low Reynolds Number Turbulence Model Chien, K.Y. https://doi.org/10.2514/3.51043
  11. AIAA Paper 90-0494;AIAA 28th Aerospace Sciences Meeting A Two-Equation Model for Compressible Flows Nichols, R.H.
  12. Journal of Computational Physics v.39 A Diagonal Form of an Implicit Approximate Factorization Algorithm Pulliam, T.H.;Chaussee, D.S. https://doi.org/10.1016/0021-9991(81)90156-X
  13. AIAA Journal v.21 Euler Equations-Implicit Schemes and Implicit Boundary Conditions Chakravarthy, S.R.