DOI QR코드

DOI QR Code

Culture Condition for the Production of Bacterial Cellulose with Gluconacetobacter persimmonus KJ145

Giuconacetobacter persimmonus KJ145를 이용한 Bacterial Cellulose 생산조건

  • Lee, Oh-Seuk (Dept. of Food Science and Technology, Keimyung University and TMR Center) ;
  • Jang, Se-Young (Dept. of Food Science and Technology, Keimyung University and TMR Center) ;
  • Jeong, Yong-Jin (Dept. of Food Science and Technology, Keimyung University and TMR Center)
  • 이오석 (계명대학교 식품가공학과 및 전통 미생물자원 산업화 연구센터) ;
  • 장세영 (계명대학교 식품가공학과 및 전통 미생물자원 산업화 연구센터) ;
  • 정용진 (계명대학교 식품가공학과 및 전통 미생물자원 산업화 연구센터)
  • Published : 2002.08.01

Abstract

We investigated the optimal condition for production of bacterial cellulose with Gluconacetobacter persimmonus KJ145. For bacterial cellulose production, optimal medium composition and culture conditions were conducted to determine. Apple juice (10$^{\circ}$Brix) medium was suitable than Hestrin & Schramm medium which is generally used for the bacterial cellulose production. When 1% pyruvate as carbon source was added to apple juice, bacterial cellulose production rose to high level. The effect of various nitrogen sources was investigated: CSL was found to be essential to high cellulose yields and the optimal CSL concentration was 10%. Optimal temperature and culture time for the bacterial cellulose production was 35$^{\circ}C$ and 16 days, respectively At the optimal condition Gluconacetobacter persimmonus KJ145 produced 8.96g/L of bacterial cellulose (dry weight), which was much higher than reported values.

Gluconacetobacter persimmonus KJ145를 사용하여 bacterial cellulose 생산에 최적 배지와 배양조건을 설정하였다. Bacterial cellulose를 생성하기 위한 최적배지로는 HS배지보다는 천연사과과즙이 더 우수한 경향을 나타내었으며, 사과과즙에 각종 탄소원을 보강한 결과 탄소원으로 pyruvate가 적합하였다. 탄소원의 농도를 조사한 결과, 1%가 적합하였으며, 각종 질소원의 영향을 조사한 결과 CSL이 가장 우수한 결과를 나타내었다. CSL의 농도에 따른 bacterial cellulose의 생산성을 조사한 결과, 10% 농도에서 가장 좋았다. Bacterial cellulose의 생성에 미치는 배지의 초기 pH의 영향을 조사한 결과 pH 6.0에서 최적이었으며,배양온도별 영향을 조사한 결과 35$^{\circ}C$에서 하는 것이 최적이었다. 최적 배양조건에서 배양시간별로 생성되는bacterial cellulose의 양을 조사한 결과 16일간 배양하는 것이 가장 좋았으며, 이 때 생성되는 bacterial cellulose의 생산량은 8.96 g/L으로 비교적 높았다.

Keywords

References

  1. Jonas R, Farah LF. 1998. Production and application of microbial cellulose. Polym Degrad Stab 59: 101-106. https://doi.org/10.1016/S0141-3910(97)00197-3
  2. Vandamme EJ, Baets SD, Vanbaelen A, Joris K, Wulf PD. 1998. Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59: 93-99. https://doi.org/10.1016/S0141-3910(97)00185-7
  3. Klemm D, Schumann D, Udhardt U, Marsch S. 2001. Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 26: 1561-1603 https://doi.org/10.1016/S0079-6700(01)00021-1
  4. Jeong YJ, Lee IS. 2000. A view of utilizing cellulose produced by Acetobacter bacteria. Food Industry and Nutrition 5: 22-29.
  5. Lee OS, Jeong YJ. 2001. Industrial application and biosynthesis of bacterial cellulose. Food Industry and Nutrition 6: 10-14.
  6. Brown AJ. 1886. On an acetic ferment which forms cellulose. J Chem Soc 49: 172-186. https://doi.org/10.1039/ct8864900172
  7. Brown AJ. 1886. An acetic ferment which forms cellulose. J Chem Soc 49: 432-439. https://doi.org/10.1039/ct8864900432
  8. Yamada Y, Hoshino K, Ishikawa T. 1997. The phylogeny of acetic acid bacteria based on the partial sequence of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter to the genetic level. Biosci Biotech Biochem 61: 1244-1251. https://doi.org/10.1271/bbb.61.1244
  9. Premjet S, Shimamoto A, Ohtani Y, Sameshima K. 1999. The importance of TCA cycle related acids in bacterial cellulose production. Transaction 55: 48-53.
  10. Weinhouse H, Sapir S, Amikam D, Shilo Y, Volman G, Ohana P, Benziman M. 1997. c-di-CMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Lett 416: 207-211. https://doi.org/10.1016/S0014-5793(97)01202-7
  11. Koo HM, Song SH, Pyun YR, Kim YS. 1998. Evidence that $\alpha$-1,4-endoglucanase secreted by Acetobacter xylinum plays an essential role for the formation of cellulose fiber. Biosci Biotechnol Biochem 62: 2257-2259. https://doi.org/10.1271/bbb.62.2257
  12. Budhiono A, Rosidi B, Taher H, Iguchi M. 1999. Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydrate Polymers 40: 137-143. https://doi.org/10.1016/S0144-8617(99)00050-8
  13. Wong HC, Fear AL, Calhoon RD, Eichinger GH, Mayer R, Amikam D, Benziman M, Gelfand DH, Meade JH, Emerick AW, Brune R, Ben-Bassat A, Ta R. 1990. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci USA 87: 8130-8134. https://doi.org/10.1073/pnas.87.20.8130
  14. Ross P, Mayer R, Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol Rev 55: 35-58.
  15. Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F. 1995. Screening of bacterial celluloseproducing Acetobacter strains suitable for agitated culture. Biosci Biotech Biochem 59: 1498-1502. https://doi.org/10.1271/bbb.59.1498
  16. Kouda T, Yano H, Yoshinaga F. 1997. Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J Fermen Bioeng 83: 371-376. https://doi.org/10.1016/S0922-338X(97)80144-4
  17. Yoshinaga F, Tonouchi N, Watanabe K. 1997. Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotech Biochem 61: 219-224. https://doi.org/10.1271/bbb.61.219
  18. Son HJ, Lee OM, Kim YG, Lee SJ. 2000. Isolation and identification of cellulose-producing bacteria. Kor J Appl Micobiol Biotechnol 28: 134-138.
  19. Lee SJ, Yoo JS, Chung SY, Choi YL. 1997. Characterization and isolation of bacteria producing cellulose. Agr Chem Biotech 40: 101-106.
  20. Lee HC, Zhao X. 1996. The optimal medium composition for the production of microbial cellulose by Acetobacter xylinum. Kor J Biotechnol Bioeng 11: 550-556.
  21. Cha YJ, Park KJ, Kim DK, Chun HS, Lee BK, Kim KH, Lee SY, Kim SJ. 1994. Isolation and characterization of cellulose producing Acetobacter xylinum KI strain. Korean J Appl Microbiol Biotechnol 22: 571-576.
  22. Hwang JW, Lee CS, Park SH, Pyun YR. 1999. Production of high concentration cellulose by Acetobacter xylinum BRC5 in fed-batch culture. Korean J Biotechnol Bioeng 14: 284-290.
  23. Jeong YJ, Lee IS, Lee OS. 2001. Optimization of cellulose production condition by Gluconobacter hansenii KJ145. 11th world congress of food science and technology. p 177.
  24. Hestrin S, Schramm M. 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze dried cells capable of polymerizing glucose to cellulose. Biochem J 58: 345-352. https://doi.org/10.1042/bj0580345
  25. Park SH, Yang YK, Hwang JW, Lee CS, Pyun YR. 1997. Microbial cellulose fermentation by Acetobacter xylinum BRC5. Kor J Appl Microbiol Biotechnol 25: 598-605.
  26. Ko JY, Shin KS, Lee JS, Choi WY. 2002. Production of bacterial cellulose by Acetobacter xylinum G11. Kor J Microbiol Biotechnol 30: 57-62.
  27. Ramana KV, Tomar A, Singh L. 2000. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16: 245-248. https://doi.org/10.1023/A:1008958014270
  28. Naritomi T, Kouda T, Yano H, Yoshinaga F. 1998. Effect of lactate on bacterial cellulose production from fructose in continuous culture. J Fermen Bioeng 85: 89-95. https://doi.org/10.1016/S0922-338X(97)80360-1
  29. Naritomi T, Kouda T, Yano H, Yoshinaga F. 1998. Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Fermen Bioeng 85: 598-603. https://doi.org/10.1016/S0922-338X(98)80012-3
  30. Matsuoka M, Tsuchida T, Matushita K, Adachi O, Yshinaga F. 1996. A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotech Biochem 60: 575-579. https://doi.org/10.1271/bbb.60.575
  31. Ishikawa A, Matuoka M, Tsuchida T, Yoshinaga F. 1995. Increase in cellulose production by sulfaguanidine-resistant mutants derived from Acetobacter xylinum subsp. sucrofermentans. Biosci Biotech Biochem 59: 2259-2262. https://doi.org/10.1271/bbb.59.2259

Cited by

  1. Effect of Acetic Acid Concentration and Mixed Culture of Lactic Acid Bacteria on Producing Bacterial Cellulose Using Gluconacetobacter sp. gel_SEA623-2 vol.50, pp.3, 2014, https://doi.org/10.7845/kjm.2014.4062
  2. Study on the Simultaneous Production of the Bacterial Cellulose and Vinegar by Gluconacetobacter persimmonis KJ145T vol.32, pp.7, 2003, https://doi.org/10.3746/jkfn.2003.32.7.981
  3. Effect of Ethanol on the Production of Cellulose and Acetic Acid by Gluconacetobacter persimmonensis KJ145 vol.32, pp.2, 2003, https://doi.org/10.3746/jkfn.2003.32.2.181
  4. Gluconacetobacter hansenii TL-2C에 의한 Bacterial Cellulose의 Pilot 생산 vol.36, pp.10, 2007, https://doi.org/10.3746/jkfn.2007.36.10.1341
  5. 교반 및 정치배양에 따른 사과식초의 품질특성 vol.39, pp.2, 2002, https://doi.org/10.3746/jkfn.2010.39.2.308