Production of $\beta$-1,3/1,6-glucan by Aureobasidium pullulans SM-2001

  • 서형필 (동아대학교 생명자원과학대학 생물공학전공) ;
  • 김지모 (동아대학교 생명자원과학대학 생물공학전공) ;
  • 신현동 (경북대학교 자연과학대학 유전공학과) ;
  • 김태권 (경북대학교 자연과학대학 유전공학과) ;
  • 장희정 (㈜글루칸) ;
  • 박복련 (㈜글루칸) ;
  • 이진우 (동아대학교 생명자원과학대학 생물공학전공)
  • Published : 2002.08.01

Abstract

Production of the exopolymer by Aureobasidium pullulans SM-2001, UV induced mutant of A. pullulans ATCC 42023, was investigated. The exopolymer produced by A. pullulans SM-2001 was confirmed to be ${\beta}$-1,3-linked homoglucans containing a few ${\beta}$-1,6-linked single glucosyl branches(${\beta}$-1,3/1,6-glucan) with the nuclear magnetic resonance(NMR) spectrum. The average molecular weight of ${\beta}$-1,3/1,6-glucan produced by A. pullulans SM-2001 was about 2.6 ${\times}$ 10$\^$5/ by the gel permeation chromatographic analysis. Sucrose was known to be better carbon source for the production of ${\beta}$ -1,3/1,6-glucan than other tested carbon sources in this study. Maximal conversion rate of ${\beta}$-1,3/1,6-glucan was about 50% when the carbon source was 0.5%(w/v) sucrose.

항암, 항콜레스테롤, 항산화 및 면역증강 효과와 피부재생 효과 등 여러 가지 생리활성이 밝혀지고 있는 $\beta$-1,3/1,6-글루칸은 크게 식물성 유래, 효모 및 곰팡이 유래, 버섯 유래의 것으로 등으로 분류할 수 있다. 풀루란을 생산하는 Aureobasidum pullulans ATCC 42023에 자외선을 조사하여 얻은 변이주인 Aureobasidum puiluian SM-2001 균주가 생산하여 체외로 분비하는 고분자 중합체를 핵자기 공명분석기로 분석한 결과, $\beta$-1,3- 및 $\beta$-1,6- 결합이 서로 혼재되어 있는 $\beta$-1,3/1,6-글루칸의 전형적인 구조임을 확인하였으며, 평균 분자량은 2.6$\times$$10^{5}$ 임을 확인하였다. 또한, $\beta$-1,3/1,6-글루칸의 생산에 최적인 탄소원이 설탕임을 확인하였으며, 0.5% (w/v)의 설탕을 탄소원으로 사용하였을 경우 약 50%의 변환율로 $\beta$-1,3/l,6-글루칸을 생산할 수 있었다. 이는 생물공학적인 방법으로 $\beta$-1,3/l,6-글루칸의 생산을 의미하며 저렴한 생산비로 대량 생산할 수 있는 방법의 개발을 의미한다한다

Keywords

References

  1. Naohito, O., U. Michkharu, T. Aiko, T. Kazuhiro, N. M. Noriko, A. Yoshiyuki, W. A. Maki, T. Hiroshi, T. Shigenori, and Y. Toshiro (1999), Solubilization of yeast cell wall ,$\beta$-(1->3)-D-glucan by sodium hypocWorite and dimethyl sulfoxide extraction, Carbohydr. Reserch. 316, 161-172 https://doi.org/10.1016/S0008-6215(99)00049-X
  2. Navarini, L., J. Bella, A. Flaibani, R. Gilli, and V. Rizza (1996), Structural characterization and solution properties of an acidic branched (1->3)-$\beta$ -D-glucan from Aureobasidium pullulans, Bio. Macromol. 19, 157-163 https://doi.org/10.1016/0141-8130(96)01121-X
  3. Sandu1a, J., G. Kogan, M. Kacurakova, and E. Machova (1999), Microbial (1->3)- $\beta$ -D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity, Carbohydr. Polymers, 38, 247-253 https://doi.org/10.1016/S0144-8617(98)00099-X
  4. Bobek, P. and S. Galbavy (2001), Effect of pleuran (beta-glucan from Pleurotus ostreatus) on the antioxidant status of the organism and on dimethylhydrazine-induced precancerous lesions in rat colon, Br. J. Biomed. Sci. 58(3), 164-168
  5. Delatte, S. J., J. Evans, A. Hebra, W. Adamson, H. B. Dthersen, and E. P. Tagge (2001), Effectiveness of beta-g1ucan collagen for treatment of partical-thickness burns in children, J. Pediatr. Surg. 36(1), 113-118 https://doi.org/10.1053/jpsu.2001.20024
  6. Hetland, G., N. Dhno, I. S. Aaberge, and M. Lovik (2000), Protective effect of $\beta$-glucan against systemic Streptococcus pneumoniae infection in mice, FEMS Immunol. Med. Microbiol. 27(2), 111-116 https://doi.org/10.1111/j.1574-695X.2000.tb01420.x
  7. Nicolosi, R., S. J. Bell, B. R. Bistrian, I. Greenberg, R. A. Forse, and G. L. Blackburn (1999), Plasma lipid changes after supplementation with beta-glucan fiber from yeast, Am. J. Clin. Nutr. 70(2), 208-212
  8. Tokunaka, K., N. Dhno, Y. Adachi, N. Miura, and T. Yadomae (2002), Application of Candida solubilized cell wall $\beta$-glucan in antitumor immunotherapy against P815 mastocytoma in mice, Int. J. Immunopharmacol. 2(1), 59-67 https://doi.org/10.1016/S1567-5769(01)00148-5
  9. Dhno, N., T. Miura, N. N. Miura, Y. Adachi, and T. Yadomae (2001), Structure and biological activities of hypochlorite oxidizes zymosan, Carbohydr. Polymers, 44, 339-349 https://doi.org/10.1016/S0144-8617(00)00250-2
  10. Kraus, J., W. Blaschek, M. Schlitz, and G. Franz (1992), Antitumor Activity of Cell Wall beta-1,3/1,6-Glucans from Phytophthora Species, Planta. Med. 58, 39-42 https://doi.org/10.1055/s-2006-961386
  11. Ukawa, Y., H. Ito, and M. Hisamatsu (2000), Antitumor effects of (1→3)-β-D-glucan and (1→6)-β-D-glucan purified from newly cultivated mushroom, Hatakeshimeji (Lyophyllum decastes Sing.),J. Biosci. Bioeng. 90, 98-104 https://doi.org/10.1016/S1389-1723(00)80041-9
  12. Lee, J. W., W. G. Yeomans, A. F. Allen, F. Deng, R. A. Gross, and D. L. Kaplan (1999), Biosynthesis of novel polymers by Aurobasidium pullulans, Appl. Environ. Microbiol. 65, 5265-5271
  13. Kim. J. H.. M. R. Kim, J. H. Lee, J. W. Lee, and S. K. Kim (2000), Production of high molecular weight pullulan by Aureobasidium pullulans using glucosamine, Biotechnol. Lett. 22, 987-990 https://doi.org/10.1023/A:1005681019573
  14. Navarini, L., J. Bella, A. Flaibani, R. Gilli, and V. Rizza (1996), Structural characterization and solution properties of an acidic branced (1->3)-)-$beta$ -D-glucan from Aureobasidium pullulans, Int. J. Bioi. Macromol. 19, 157-163 https://doi.org/10.1016/0141-8130(96)01121-X
  15. Ueda, S., K. Fusita, K. Komatsu, and Z. Nakashima (1963), Polysaccharide produced by the genus Pullularia, Appl. Microbiol. 11, 211-215
  16. Bouveng, H. D., H. Kiessling, B. Lindberg, and J. McKay (1963), Polysaccharides elaborated by Pullularia pullulans, Acta Chem. Scand. 17, 797-800 https://doi.org/10.3891/acta.chem.scand.17-0797
  17. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956), Colorimetric method for determination of sugars and related substances, Anal. Chem. 28, 350-356 https://doi.org/10.1021/ac60111a017
  18. Deslandes, Y., R. H. Marchessault, and A. Sarko (1980), Triple-helical structure of (1-3)-$\beta$-D-glucan, Macromol. 13, 1466-1471 https://doi.org/10.1021/ma60078a020
  19. Harada, T., M. Masada, K. Fujimori, and I. Maeda (1966), Production of a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. myxogenes 10C3, Agric. BioI. Chem. 30, 196-198 https://doi.org/10.1271/bbb1961.30.196
  20. Sathyanarayana, B. K. and E. S. Stevens (1983), Theoretical study of the conformations of pustulan (1-6)-beta-D-glucan, J. Biomol. Struct. Dyn. 1(4), 947-959 https://doi.org/10.1080/07391102.1983.10507496
  21. Ebbole, D. J. (1998), Carbon catabolite repression of gene expression and condition in Neurospora crassa, Fungal Gen. BioI. 25, 15-21 https://doi.org/10.1006/fgbi.1998.1088
  22. Anwar, M. N., M. Suto, and F. Tomita (1996), Isolation of mutants of Penicillium purpurogen resistant to catabolite repression, Appl. Microbiol. Biotechnol. 45, 684-687 https://doi.org/10.1007/s002530050748
  23. Wolff, J. A., C. H. MacGregor, R. C. Eisenberg, and P. V. Phibbs Jr. (1991), Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAD, J. Bacterial. 173, 4700-4706 https://doi.org/10.1128/jb.173.15.4700-4706.1991
  24. Gancedo, J. M. (1998), Yeast carbon catabolite repression, Microbiol. Mol. BioI. Rev. 62, 334-361