DOI QR코드

DOI QR Code

Effects of Noble Gas on the Sonolytic Decomposition

초음파분해반응에 있어서 희가스의 영향

  • 임봉빈 (일본 오사카부립대학 공학연구과) ;
  • 김선태 (대전대학교 환경공학과)
  • Published : 2002.07.01

Abstract

The effects of noble gas (such as helium, neon, argon, krypton, and xenon) on the sonolytic decomposition of water and 2-methyl-2-propanol(t-butanol) with 200 KHz high power ultrasound were investigated. The physical properties of the noble gas have an effect on the formation rate of products $(H_2O_2,\;H_2,\;O_2)$ and the decomposition rate on the sonolytic decomposition of water. The pyrolysis products, such as methane, ethane, ethylene, and acetylene are formed during the sonolytic decomposition of t-butanol. From the estimation of the ratio $[C_2H_4+C_2H_2] / [C_2H_6]$, the cavitation temperature would be varied by the used noble gas. In all cases for the sonolytic decomposition of water, t-butanol, and diethyl phthalate, the decomposition rates were xenon > krypton > argon > neon > helium with a significant difference and were closely correlated with the formation rate of OH radical and high temperature inside the cavitation bubble under each noble gas.

Keywords

References

  1. Sittig, M., 1991, Handbook of toxic and hazardous chemicals and carcinogens, 3rd ed., Noyes Publishers, Park Ridge, NJ.
  2. Mason, T. J., 1990, Advances in sonochemistry Volume I, JAI Press, London.
  3. Mason, T. J., 1991, Practical sonochemistry: users guide to applications in chemistry and chemical engineering, Ellis Horwood., West Sussex.
  4. Mason, T. J., 1999, Sonochemistry, Oxford University Press, Oxford.
  5. Suslick, K. S., 1988, Ultrasound: its chemical, physical, and biological effects, VCH, Weinheim.
  6. Suslick, K. S., 1990, Sonochemistry, Science, 247, 1439-1445. https://doi.org/10.1126/science.247.4949.1439
  7. 일본화학회, 1993, 화학편람, 丸善.
  8. Alegria, A. E., Y. Lion, T. Kondo, and P. Riesz, 1989, Sonolysis of aqueous surfactant solutions. Probing the interfacial region of cavitation bubbles by spin trapping, J. Phys, Chem., 93, 4908-4913. https://doi.org/10.1021/j100349a046
  9. Yim, B., H. Okuno, Y. Nagata, and Y. Maeda, 2001, Sonochemical degradation of chlorinated hydrocarbons using a batch and continuous flow system, J. Hazard. Mat., B81, 253-263.
  10. Gutierrez, M., A. Henglein, and F. Ibanez, 1991, Radical scavenging in the sonolysis of aqueous solutions of I, Br, and $N_3$, J. Phys. Chem., 95, 6044-6047. https://doi.org/10.1021/j100168a061
  11. Yim, B., H. Okuno, Y. Nagata, R. Nishimura, and Y. Maeda, 2002, Sonolysis of surfactants in aqueous solutions: an accumulation of solute in the interfacial region of the cavitation bubbles, Ultrason. Sonochem., 9, 209-231. https://doi.org/10.1016/S1350-4177(01)00123-7
  12. Hart, E. J. and A. Henglein, 1985, Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions, J. Phys. Chem., 89, 4342-4347. https://doi.org/10.1021/j100266a038
  13. Hart, E. J. and A. Henglein, 1987, Sonochemistry of aqueous solutions: $H_2-O_2$ combustion in cavitation bubbles, J. Phys. Chem., 91, 3654-3656. https://doi.org/10.1021/j100297a038
  14. Suslick, K. S., R. E. Cline, and D. A. Hammerton, 1985, Determination of local temperatures caused by acoustic cavitation, Ultrason. Symp. Proc., 2, 1116-1121.
  15. Suslick, K. S., D. A. Hammerton, and R. E. Cline, 1986, The sonochemical hot spot, J. Am. Chem. Soc., 108, 5641-5642. https://doi.org/10.1021/ja00278a055
  16. Flint, E. B. and K. S. Suslick, 1991, The temperature of cavitation, Science, 253, 1397-1399. https://doi.org/10.1126/science.253.5026.1397
  17. Didenko, Y. T., W. B. McNamara III, and K. S. Suslick, 1999, Temperature of multi bubble sonoluminescence in water, J. Phys, Chem. A, 103, 10783-10788. https://doi.org/10.1021/jp991524s
  18. McNamara III, W. B., Y. T. Didenko, and K. S. Suslick, 1999, Sonoluminescence temperatures during multi-bubble cavitation, Nature, 401, 772-775. https://doi.org/10.1038/44536
  19. Henglein, A. and C. Kormann, 1985, Scavenging of OH radicals produced in the sonolysis of water, Int. J. Radiat. Biol., 48, 251-258. https://doi.org/10.1080/09553008514551241
  20. Buxton, G. V., C. L. Greenstock, W. P. Helman, and A. B. Ross, 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(.OH/.O) in aqueous solution, J. Phys, Chem. Ref. Data, 17, 513-809. https://doi.org/10.1063/1.555805
  21. Tauber, A., G. Mark, H. P. Schuchmann, and C. von Sonntag, 1999, Sonolysis of tert-butyl alcohol in aqueous solution, J. Chem. Soc., Perkin Trans., 2, 1129-1135.
  22. Gutierrez, M., A. Henglein, 1988, Sonolytic decomposition of poly (vinylpyrrolidone), ethanol, and tetranitromethan in aqueous solution, J. Phys. Chem., 92, 2978-2981. https://doi.org/10.1021/j100321a052
  23. Henglein, A. and M. Gurierrez, 1988, Sonolysis of polymers in aqueous solution. New observation on pyrolysis and mechanical degradation, J. Phys. Chem., 92, 3705-3707. https://doi.org/10.1021/j100324a005
  24. Yim, B., Y. Nagata, and Y. Maeda, 2002, Sonolytic degradation of phthalic acid esters in aqueous solution. Acceleration of hydrolysis by sonochemical action, J. Phys, Chem. A, 106, 104-107. https://doi.org/10.1021/jp011896c
  25. Hart, E. J., C. H. Fisher, and A. Henglein, 1990, Sonolysis of hydrocarbons in aqueous solution, Radiat. Phys. Chem., 36, 511-516.