groES Expression Related to Antifungal Activity of Streptomyces sp. SAR01

Streptomyces sp. SAR01 균주에서의 항진균 관련 groES의 발현

  • 이영근 (한국원자력연구소 R. 방사선응용연구팀) ;
  • 김재성 (한국원자력연구소 R. 방사선응용연구팀) ;
  • 조규성 (한국원자력연구소 R. 방사선응용연구팀) ;
  • 장병일 (한국원자력연구소 R. 방사선응용연구팀) ;
  • 추철형 (한국원자력연구소 R. 방사선응용연구팀)
  • Published : 2002.09.01

Abstract

To analyse proteins and gene related to antifungal activity, SAR01 strain was isolated from a brown seaweed and identified as Streptomyces sp. by FAME(fatty acid methyl ester) analysis. Antifungal activity deficient mutant(SAR535) of Streptomyces sp. SAR01 was induced by gamma radiation$({60}^Co)$. It was found that 6 specific protein spots appeared only in SAR01 by 2-D electrophoresis analysis. Among them, a protein of 10 kDa had homology of 96% with 10 kD chaperonin cpn 10 (GroES) by Basic Local Alignment Search Tool(BLAST, NCBI) analysis. SAR535 transformants into which groES was transferred by electroporation revealed antifungal activity newly similar with SAR01 It suggested that groES be supposed to be related to the antifungal activity of Streptomyces sp. SAR01.

항진균 활성 관련 단백질을 찾기 위해 미역류로부터 Streptomyces sp. SAR01을 분리하고, FAME (fatty acid methyl ester)분석으로 동정하였다. 감마선(sup $({60}^Co)$)조사를 이용하여 항진균 활성 결핍 돌연변이체(SAR535)를 유도한 후, 이차원전기영동으로 단백질을 분석한 결과 SAR01에만 존재하는 6종의 단백질을 확인할 수 있었다. 이중 10 kDa chaperonin cpn10 (GroES)과 96%의 상동성을 가진 10 kDa의 단백질을 클로닝하였으며, E. coli Ml5에서 과대 발현됨을 확인하였다. 또한 SAR535에 형질전환시킨 결과 SAR01과 유사한 항진균 활성이 나타났다. 이것으로 볼 때 groES는 Streptomyces sp. SAR01의 항진균 활성에 관련된 것으로 사료된다.

Keywords

References

  1. Infect. Immun. v.70 Selective T-cell recognition of the N-terminal peptide of GroES in tuberculosis Boosbun, C.I.;R.J. Wilkinson;J. Ivanyi https://doi.org/10.1128/IAI.70.3.1645-1647.2002
  2. Appl. microbiol. biotechnol. v.32 Genetic complementation of Streptomyces tendae dificient in nikkomycin production Bormann, C.;K. Aberle;H.P. Fiedler;H. Schrempf https://doi.org/10.1007/BF00903777
  3. Proc. Natl. Acad. Sci. v.91 Effective amplification of long targets from cloned inserts and human genomic DNA Cheng, S.;C. Fockler;W. Barnes;R. Higuchi https://doi.org/10.1073/pnas.91.12.5695
  4. Plant Soil. v.129 Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria Chet, I.;R. Shapira;A. Ordentlich;A.B. Oppenheim https://doi.org/10.1007/BF00011694
  5. Vert. Microbiol. v.67 The GroES antigens of Mycobacterium avium and Mycobacterium paratuberculosis Cobb, A.J.;R. Frothingham https://doi.org/10.1016/S0378-1135(99)00019-X
  6. Trends Microbiol. v.6 Engineering disease and pest resistance in plants Dempsey, D.M.A.;H. Silva;D.F. Klessig https://doi.org/10.1016/S0966-842X(97)01186-4
  7. Ann. N. Y. Acad. Sci. v.121 Disc electrophoresis-Ⅱ: method and application to human serum proteins Dives, B. J. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  8. Nucl. Acids Res. v.16 High efficiency transformation of E. coli by high voltage electroporation Dower, W.J.;J.F. Miller;C.W. Ragdale https://doi.org/10.1093/nar/16.13.6127
  9. Science v.20 The biology of oxygen radicals Fridovich, I.
  10. Biochim. Biophys. Acta v.1596 New aspects on the mechanism of GroEL-assisted protein folding Guhr, P.;S. Neuhofen;C. Coan;J.G. Wise;P.D. Vogel https://doi.org/10.1016/S0167-4838(02)00219-4
  11. FEBS Lett. v.497 Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system Han, W.;P. Christen https://doi.org/10.1016/S0014-5793(01)02435-8
  12. J. Mol. Biol. v.166 Studies on transformation of Escherichia coli with plasmides Hanahan, D. https://doi.org/10.1016/S0022-2836(83)80284-8
  13. J. Ferment. Technol. v.66 Distribution of rare actinomycetes in Japan soil Hayakawa, M.;K. Ishizawa;H. Nonomura https://doi.org/10.1016/0385-6380(88)90001-5
  14. Electrophoresis v.8 Improved silver staining of plant protein, RNA and DNA in polyacrylamide gels Helmut, B.;H. Beier;H.J. Gross https://doi.org/10.1002/elps.1150080203
  15. Science v.284 Phylogenetic Perspectives in Innate Immunity Hoffmann, J.A.;F.C. Kafatos;C.A.J. Jr;R.A.B. Ezekowitz https://doi.org/10.1126/science.284.5418.1313
  16. Appl. Environ. Microbiol. v.67 Isolation and in vivo and in vitro antifungal activityof phenylacetic acid and sodium phenylacetate from Streptomyces humidus Hwang, B.K;S.W. Lim;B.S. Kim;J.Y. Lee;S.S. Moon https://doi.org/10.1128/AEM.67.8.3739-3745.2001
  17. J. Hepatol. v.35 A non-toxic heat shock protein 70 inducer, geranylgeranylacetone, suppresses apoptosis of cultured rat hepatocytes caused by hydrogen peroxide and ethanol Ikeyama, S.;K. Kusumoto;H. Miyake;K. Rokutan;S. Tashiro https://doi.org/10.1016/S0168-8278(01)00053-8
  18. Bioscien. Biotechnol. Biochem. v.66 Functional analysis of the chitinbinding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increse of antifungal function Itoh, Y.;T. Kawase;N. Nikaidou;H. Fukada;M. Mitsutomi;T. Watanabe;Y. Itoh https://doi.org/10.1271/bbb.66.1084
  19. Ann. Med. v.31 Heat shock proteins as cellular lifeguards Jaattela, M. https://doi.org/10.3109/07853899908995889
  20. Appl. Environ. Microbiol. v.62 Diversity of aquatic actinomycetes in lakes of the middle plateau, Yunna, China Jiang, C.L.;L.H. Xu
  21. Int. Microbiol. v.4 Classification and mode of action of membrane-active bacteriocins produced by gram-positive bacteria Juan, C. O.;A. G. Pisabarro
  22. J. Microbiol. v.36 Diversity of actinomycetes antagonistic to plant pathogenic fungi in cave and scamud soils of Korea Kim, B.S.;J.Y. Lee;B.K. Hwang
  23. Electrophoresis v.22 Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays Kim, S.T.;K.S. Cho;Y.S. Jang;K.Y. Kang https://doi.org/10.1002/1522-2683(200106)22:10<2103::AID-ELPS2103>3.0.CO;2-W
  24. Nature v.277 Cleavage of structural proteins during assembly of the head of bactariophage T4 Laemmli, U.K.
  25. Radiat. Phys. Chem. v.57 Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma-ray radiation and their genetic similarities Lee, Y.K.;H.H. Chang;J.S. Kim;K.S. Lee https://doi.org/10.1016/S0969-806X(99)00310-2
  26. Biochem. Biophys. Res. Commun. v.229 Evidence for GroES acting as a transcriptional regulator Legname, G.;P. Buono;G. Fossati;N. Monzini;P. Mascagni;D. Modena;F. Marcucci https://doi.org/10.1006/bbrc.1996.1818
  27. Biochim. Biophys. Acta v.1462 Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes Matsuzaki, K. https://doi.org/10.1016/S0005-2736(99)00197-2
  28. J. Clin. Invest. v.95 Clinical implications of the stress response Minowada, G.;W.J. Welch https://doi.org/10.1172/JCI117655
  29. J. Biol. Chem. v.250 High resolution two-dimensional electrophoresis of proteins O'Farrell, P.H.
  30. Trends microbiol. v.8 The role of cationic antimicrobial peptides in innate host defences Hancock, R.E.W;G. Diamond https://doi.org/10.1016/S0966-842X(00)01823-0
  31. Prunus avium L. cv Bing. Theor. Appl. Genet. v.96 Radiation-induced mutations from accessory buds of sweet cherry Saamin, S.;M. M. Thompson https://doi.org/10.1007/s001220050819
  32. Mol. Gen. Genet. v.265 Suppression of gamma ray-induced illegitimate recombination in Escherichia coli by the DNA-binding protein H-NS Shanado, Y.;K. Hanada;H. Ikeda https://doi.org/10.1007/s004380000399
  33. Annu. Rev. Phytopathol. v.26 Biological control of soilborne plant pathogens in the rhizosphere with bacteria Weller, D.M. https://doi.org/10.1146/annurev.py.26.090188.002115
  34. Tetrahedron Lett. v.38 Synthesis of the spiroketal segment (C19-C34) of the rutamycins, antifungal metabolites of Streptomyces species White, J.D.;Y. Ohba;W.J. Porter;W. Shan https://doi.org/10.1016/S0040-4039(97)00585-6
  35. Appl. Environ. Microbiol. v.68 An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp Woo, J.H.;E. Kitamura;H. Myouga;Y. Kamei https://doi.org/10.1128/AEM.68.6.2666-2675.2002
  36. Applide Radiation Chemistry: Radiation Processing. Radiation dosimetry Woods, R.J.;A.K. Pikaev
  37. Nature v.415 Antimicrobial peptides of multicellular organisms Zasloff, M. https://doi.org/10.1038/415389a