Thermal Resistivity of Backfill Materials for Underground Power Cables

지중송전관로 되메움재의 열저항 특성

  • 김대홍 (한국전력공사 전력연구원) ;
  • 이대수 (한국전력공사 전력연구원)
  • Published : 2002.10.01

Abstract

Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need for cable backfill materials that can maintain a low thermal resistivity (less than 5$0^{\circ}C$-cm/watt) even while they are subjected to high temperatures for prolonged periods. Temperatures greater than 5$0^{\circ}C$ to 6$0^{\circ}C$ may lead to breakdown of cable insulation and thermal nlnaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aiming at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were called out for DonUing river sand, a relatively uniffrm sand of very high thermal resistivity (5$0^{\circ}C$ -cnuwatt at 10% water content, 26$0^{\circ}C$-cm/watt when dry), and Jinsan granite screenings, and A-2(sand and gravel mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity (about 35$^{\circ}C$ -cm/watt when at 10 percent water content, 10$0^{\circ}C$-cm/watt when dry). Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity.

지중송전케이블의 송전용량은 케이블 또는 주변지반의 최대허용온도에 좌우되기 때문에 케이블 주위 되메움재는 운영기간동안 낮은 열저항성을 유지하여야 한다. 케이블 주위에 발생된 열은 되메움재를 통해 즉시 주위에 발산시켜 제거하여야 하며, 그렇지 않으면 통상온도 (50~6$0^{\circ}C$)에서도 열폭주에 의한 절연파괴에 이를 수 있다. 본 논문에서는 되메움재의 열저항을 낮추기 위한 여러 가지 방법에 대해 논하였으며, 다양한 첨가제를 사용하여 시험을 수행함으로써 열저항 효과를 측정하였다. 연구결과, 영광 동림천 모래의 경우 상대적으로 균등한 입도분포를 나타내는 모래로써대단히 높은 열저항치(5$0^{\circ}C$'-cm/watt at 10% 함수비, 260-cm/watt 건조 시)를 나타냈다. 또한 진산 화강암 석분 및모래싸갈(A-2), 석분쇄석 혼합재(E-1)의 경우 양호한 입도와 낮은 열저항(35$^{\circ}C$-cm/wau 10% 함수비, 10$0^{\circ}C$-cm/watt 건조시)을 보여주었으며, 이들 연구결과를 토대로 열저항이 낮은 3가지 형태의 되메움재를 제시하였다.

Keywords

References

  1. 대한토목학회 학술발표회논문집 지중송전케이블 되메움토사의 열저항 특성 김대홍;이대수;정원섭;정범용
  2. Journal of Applied Physics v.25 no.2 A Transient-flow Method for Determination of Thermal Constants of Insulating Material in Bulk Blackwell, J. H. https://doi.org/10.1063/1.1721592
  3. Conduction of Heat in Solids, (2nd Edition) Carlslaw, H. S.;Jaeger, J. C.
  4. Aust. Jour. Physics. v.11 no.2 On the Cylindrical Probe of Measuring Thermal Conductivity with Special Reference to Soils de Vries, D. A.;Peck, A. J. https://doi.org/10.1071/PH580255
  5. CRIEPI-73087 Thermal Diffusion and its Application to Cable Ampacity Fukagawa, H.;Imajo, T.;Ogata, N.
  6. ASHVE J. Sect. v.24 no.10 Transient Heat Flow Apparatus for the Determination of Thermal Conductivities, Heating Piping and Air Conditioning Hopper, F. C.;Lepper, F. R.
  7. Proc. Roy. Soc. Lond., Ser. A v.273 Non-steady State Measurements of Liquid Polyphase Horrocks, J. K.;McLanughlin
  8. CRIEPI-72061, 175063 Development of Backfill Soils for Underground Cables(2) - Study on the Optimum Grading Distribution Imajo, T.
  9. IEEE std 442-1981 IEEE Guide for Soil Thermal Resistivity Measurements
  10. ISO 8894-1 Refractory Materials, Determination of Thermal Conductivity - Part 1:Hot-wire Method (cross-array) International Organization for Standardization
  11. ISO 8894-2 Refractory Materials, Determination of Thermal Conductivity - Part 2 Hot-wire Method (Paralle) International Organization for Standardization
  12. EPRI EL-506, EL-1894, EL-4150 Backfill Materials for Underground Power Cables, Phase 1~3 Mitchell, J. K.;Chan, C. K.
  13. Proceedings of ASTM v.47 Tests for Thermal Diffusivity of Granular Materials Shannon, W. L.;Wells, W. A.
  14. AIEE Committe Report, Transaction of AIEE v.79 Soils Thermal Characteristics in Relation to Underground Power Cable Wiseman, R. J.;Burrel, R. W.