Optimal Control of steady Incompressible Navier-Stokes Flows

Navier-Stokes 유체의 최적 제어

  • 박재형 (목원대학교 건축도시공학부) ;
  • 홍순조 (우석대학교 건축공학과)
  • Published : 2002.12.01

Abstract

The objective of this study is to develop efficient numerical method to enable solution of optimal control problems of Navier-Stokes flows and to apply these technique to the problem of viscous drag minimization on a bluff body by controlling boundary velocities on the surface of the body. In addition to the industrial importance of the drag reduction problem, it serves as a model for other more complex flow optimization settings, and allows us to study, modify, and improve the behavior of the optimal control methods proposed here. The control is affected by the suction or injection of fluid on portions of the boundary, and the objective function represents the rate at which energy is dissipated in the fluid. This study shows how reduced Hessian successive quadratic programming method, which avoid converging the flow equations at each iteration, can be tailored to these problems.

본 연구의 목적은 Navier-Stokes 유체의 최적 제어 문제의 해를 얻을 수 있는 효과적인 수치해석기법을 개발하고, 이를 물체의 항력(drag)을 최소화하는 문제에 적용하는데 있다. 본 연구는 항력을 줄인다는 산업적인 중요성과 함께 최적 제어를 위한 하나의 효과적인 최적화 기법의 모델을 제공하고 있다. 항력을 줄이기 위한 방법으로써 물체의 경계면에서 유체의 흡입(suction)과 방출(injection)이라는 기법을 사용하여 경계면에서 속도를 제어하였고, 목적함수로써 항력을 표현하기 위하여 에너지 소실의 변화율을 사용하였다. 컴퓨터 용량을 최소화하고 최적화에서의 해의 보장성과 경제성을 위하여, Navier-Stokes의 해석을 위하여 페널티 방법을 사용하였고 최적화 기법을 위해서는 SQP 방법을 사용하였다. 그리고 Navier-Stokes 유체는 대단히 비선형성을 나타내기 때문에 최적화를 수행하기에는 매우 힘들다. 이를 위하여 연속기법(continuation technique)을 사용하였다.

Keywords

References

  1. Browne, M. W., 'Micro-machines help solve intractable problem of turbulence', New York Times, 1995, p.5
  2. Prandtl, L., and Tietjens, O. G., Applied Hydro- and Aeromechanics, Dover, New York, 1934, p.81
  3. Braslow, A. L., Burrows, D. L., Tetervin, N., and Visconti, F., 'Experimental and theoretical studies of area suction for the control of laminar boundary layer', NACA report No. 1025, 1951
  4. Raspet, A., 'Boundary-layer studies on a sailplane', Aeronaut Eng Rev Vol. 11, 1952, pp.52-60
  5. Whites, R. C., Suddert, R. W., and Wheldon, W. G., 'Laminar flow control on the X-21', Astronautics and Aeronautics, Vol. 4, 1966, pp.38-43 https://doi.org/10.2514/3.3381
  6. Gad-el-Hak, M., 'Flow control', Applied Mechanics Reviews, Vol. 42, 1989, pp.261-293 https://doi.org/10.1115/1.3152376
  7. Brutyan, M. A., and Krapivskii, P. L., 'Optimization of Suction-Blowing in a Viscous Fluid', Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti iGaza, No.3 1989, pp.27-32
  8. Walsh, M. J., 'Riblets in Viscous drag reduction in boundary layers', eds. Bushnell, D. M. and Hefner J. N., Progress in Astro and Aeronautics, Vol. 123, AIAA, Washington, DC, pp.203-261
  9. Riley, J. J., Gad-el-Hak, M., and Metcalfe, R. W., 'Compliant Coatings', Ann Rev Fluid Mech, Vol. 20, 1988, pp.393-420 https://doi.org/10.1146/annurev.fl.20.010188.002141
  10. Choi, H., Moin, P., and Kim. J., 'Direct numerical simulation of turbulent flow over riblets', J Fluid Mech Vol. 255, 1993, pp. 503-539 https://doi.org/10.1017/S0022112093002575
  11. Alfredsson, P. H., Johansson, A. V., Haritonidis, J. H., and Eckelmann, H., 'The fluctuating wallshear stress and the velocity field in the viscous sublayer', Phys Fluids, Vol. 31, 1988, pp.1026-1033 https://doi.org/10.1063/1.866783
  12. Haritonidis, J. H., 'The measurement of wall shear stress', in Advances in Fluid Mechanics Measurements, ed. Gad-el-Hak, Springer Verlag, Berlin, 1988
  13. Nitsche, W., Mirow, P., and Szodruch, J., 'Piezoelectric foils as a means of sensing unsteady surface forces', Experiments in Fluids, Vol. 7, 1989, pp.111-118 https://doi.org/10.1007/BF00207303
  14. Varadan, V. V., Roh, Y. R., and Varadan, V. K., 'Local/global SAW sensors for turbulence', 1989 IEEE Ultrasonic Symposium, Montreal
  15. Varadan, V. V., Roh, Y. R., and Varadan, V. K., 'Measurement of the skin friction associated with turbulent flows in air and water using saw devices', 1990 IEEE Ultra- sonic Symposium, Montreal
  16. Gunzburger, M. D., Hou, L. S., and Svobodny, T. P., 'Boundary Velocity Control of Incompressible Flow with an Application to Viscous Drag Reduction', SIAM J. Control and Optimization Vol. 30 No. 1, 1992, pp. 167-181 https://doi.org/10.1137/0330011
  17. Gunzburger, M. D., Hou, L. S., and Svobodny, T. P., 'Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls', Mathematical Modeling and Numerical Analysis, Vol. 25, No. 6, 1991, pp. 711-748 https://doi.org/10.1051/m2an/1991250607111
  18. Bewley, T. R., Choi, H., Temam, R., and Moin, P., 'Optimal feedback control of turbulent channel flow,'Annual Research Briefs-1993, Center for Turbulence Research, Stanford University/NASA Ames Research Center, 1993
  19. Gunzburger, M. D., Finite Element Methods for Viscous Incompressible Flows, Academic Press, San Diego, 1989
  20. Hock, W., and Schittkowski, K., 'A comparative performance evaluation of 27 nonlinear programming codes', Computing, Vol. 30, 1983, pp. 335-358 https://doi.org/10.1007/BF02242139
  21. Davis, T. A. and Duff, I. S., 'An unsymmetric pattern multifrontal method for sparse LU factorization', Technical Report number TR-93-018, CIS Dept., Univ. of Florida, Gainesville, FL, 1993
  22. Gad-el-Hak, M., 'Interactive Control of Turbulent Boundary Layers: A Futuristic Overview', AIAA Journal, Vol. 32, No. 9, 1994
  23. Moin, P., and Bewley, T., 'Feedback control of turbulence', Applied Mechanics Reviews, Vol. 47 No. 6, Part 2, 1994