DOI QR코드

DOI QR Code

Flavonoid Biosynthesis: Biochemistry and Metabolic Engineering

Flavonoid 생합성:생화학과 대사공학적 응용

  • Park, Jong-Sug (Metabolic Engineering Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Kim, Jong-Bum (Metabolic Engineering Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Kim, Kyung-Hwan (Metabolic Engineering Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Ha, Sun-Hwa (Metabolic Engineering Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Han, Bum-Soo (Metabolic Engineering Division, National Institute of Agricultural Biotechnology, RDA) ;
  • Kim, Yong-Hwan (Metabolic Engineering Division, National Institute of Agricultural Biotechnology, RDA)
  • 박종석 (농업생명공학연구원 신기능소재개발과) ;
  • 박종범 (농업생명공학연구원 신기능소재개발과) ;
  • 김경환 (농업생명공학연구원 신기능소재개발과) ;
  • 하선화 (농업생명공학연구원 신기능소재개발과) ;
  • 한범수 (농업생명공학연구원 신기능소재개발과) ;
  • 김용환 (농업생명공학연구원 신기능소재개발과)
  • Published : 2002.12.01

Abstract

Flavonoid biosynthesis is one of the most extensively studied areas in the secondary metabolism. Due to the study of flavonoid metabolism in diverse plant system, the pathways become the best characterized secondary metabolites and can be excellent targets for metabolic engineering. These flavonoid-derived secondary metabolites have been considerably divergent functional roles: floral pigment, anticancer, antiviral, antitoxin, and hepatoprotective. Three species have been significant for elucidating the flavonoid metabolism and isolating the genes controlling the flavonoid genes: maize (Zea mays), snapdragon (Antirrhinum majus) and petunia (Prtunia hybrida). Recently, many genes involved in biosynthesis of flavonoid have been isolated and characterized using mutation and recombinant DNA technologies including transposon tagging and T-DNA tagging which are novel approaches for the discovery of uncharacterized genes. Metabolic engineering of flavonoid biosynthesis was approached by sense or antisense manipulation of the genes related with flavonoid pathway, or by modified expression of regulatory genes. So, the use of a variety of experimental tools and metabolic engineering facilitated the characterization of the flavonoid metabolism. Here we review recent progresses in flavonoid metabolism: confirmation of genes, metabolic engineering, and applications in the industrial use.

주요 농작물에서 건강-방어용 flavonoids 생성, phytoalexin (isoflavonoid, flavanol, proanthocyanidin)의 생성 및 소절을 통한 식물의 저항력 증대, 색소 (flavonol, anthocyanin)의 합성에 의한 자외선 방어, nod 유전자 inducer (flavones, isoflavones)의 대량 발현에 의한 혹 형성 (nodulation) 효율증대 등은 대사공학 적으로 향상 가능한 부분들이다. 파란 꽃을 개화하는 품종이 카네이션, 국화, 장미 등 중요 장식용 화훼작물들에는 결핍되어 있는데,이는 F3'5'H 유전자가 없어서 파란색 delphinidin 색소를 생산할 수 없기 때문으로 추정된다. 따라서 F3'5'H 유전자를 형질전환 하여 이러한 제한을 극복하고 delphinidin 유도체 생산이 가능하게 되면 파란색 꽃의 생산 가능성을 증대시킬 수 있게 된다. 또한 영양학적인 측면에서 이미 중요한 생리적 기능이 밝혀진 catechin을 비롯한 proanthocyanidin 과 anthocyanin은 의약품 및 식품첨가제 등 다양한 분야에서 크게 시장성을 넓히고 있어 상업적 측면에서 대사공학의 유망한 목표가 되고 있다. 최근의 대사공학 분야에서의 많은 성공에도 불구하고, flavonoid에 대한 고도의 대사공학 조절을 이용하여 원하는 flavonoid 화합물을 생성하거나, 원치 않는 flavonoid 화합물을 억제하도록 하는 데는 여전히 기술적 문제점들이 남아있다. 예를 들면 IFS와 FLS 등의 유전자 분리 그리고 조직 및 시기 특이적인 promoter 개발 등이 동시에 이루어져야 하며, co-pigmentation 및 액포 pH와 관련된 메카니즘에 대한 이해, 화훼작물들의 형질전환 기술 개발 등이 이루어져야 원하는 꽃의 착색 조절이 가능하게 될 것이다. 최근 나팔꽃에서 액포의 $Na^{+}$H$^{+}$ exchanger를 파괴하여 화색을 변경시킨 mutants 연구를 통하여 조만간 액포 pH의 조절을 이용한 식물 대사공학이 가능할 것으로 기대되고 있다 (Yamaguchi et al. 2001). 아직 자연계에서 기본적인 골격의 변경만으로 수천 종류의 flavonoid가 생성 가능한가는 여전히 의문점으로 남아 있으나, 분명한 것은 다양한 식물 체계에서의 노력으로 농업, 원예, 그리고 영양분 증대를 위한 flavonoid 대사를 어떻게 조절할 것인가에 대한 정보를 얻을 수 있고, 또한 flavonoid 생합성 연구로부터 얻어진 정보들을 통하여 세포질 대사와 기본적인 생물학적 현상에 대한 이해를 넓힐 수 있게 될 것이다.

Keywords

References

  1. Akashi R, Fukuchimizutani M, Aoki T, Ueyama Y, Ayabe S (1999) Molecular cloning and biochemical characterization of novel cytochrome P450, flavone synthase II, that catalyses direct conversion of flavanones to flavones. Plant Cell Physiol 40:1182-1186 https://doi.org/10.1093/oxfordjournals.pcp.a029505
  2. Beld M, Martin C, Huits H, Stuithe AR, Gerats AGM (1989) Flavonoid synthesis in Petunia hybrida: Partial characterization of dihydroflavonol-4-reductase genes. Plant Mol Biol 13:491-502 https://doi.org/10.1007/BF00027309
  3. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulatory of phenylpropanoid biosynthesis. Plant Cell 12:2383-2393 https://doi.org/10.1105/tpc.12.12.2383
  4. Britsch L, Ruhnau-Brich B, Forkmann G (1992) Molecular cloning, sequence analysis, and in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida. J Biol Chem 267:5380-5387
  5. Brugliera F, Barri-Rewe G, Holton TA, Mason JG (1999) Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Htl locus of Petunia hybrida. 19:441-451
  6. Brugliera F, Tull D, Holton TA, Karan M, Treloar N, Simpson K, Skurozynska J, Nason JG (2000) Introduction of a cytochrome b5 enhances the activity of flavonoid 3'5' (cytochrome P450) in transgenic carnation. Sixth International Congress of Plant Molecular Biology. University of Laval, Quebec, pp 6-8
  7. Coen EC, Carpenter R, Martin C (1986) Transposable elements generate novel spatial patterns of gene expression in Antirrhinum Majus. Cell 47:285-296 https://doi.org/10.1016/0092-8674(86)90451-4
  8. Cone KC, Burr FA, Burr B (1986) Molecular analysis of the maize anthocyanin regulatory locus C1. Proc Natl Acad Sci USA 83:9631-9635 https://doi.org/10.1073/pnas.83.24.9631
  9. Damiani F, Paolocd F, Cluster P, Arcioni S, Tanner G, Joseph R, Li Y, de Majnik J, Larkin P (1999) The maize transcription factor Sn alters proanthocyanidin synthesis in transgenic Lotus corniculatus plants. Aust J Plant Physiol 26:159-169 https://doi.org/10.1071/PP98121
  10. Davies K, Bloor S, Spiller G (1998) Production of yellow colour in flower: redirection of flavonoid biosynthesis in Petunia. Plant J 13:259-266 https://doi.org/10.1046/j.1365-313X.1998.00029.x
  11. de Vetten N, ter Horst J, van Schaik J-P, de Boer A, Mol J, Koes R (1999) A cytochrome b5 is required for full activity of flavonoid 3'5'-hydroxylase, a cytochrome P450 involved in the formation of blue flower. Proc Natl Acad Sci USA 96:778-783 https://doi.org/10.1073/pnas.96.2.778
  12. de Vetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, Plants and animals. Genes Dev 11:1422-1434 https://doi.org/10.1101/gad.11.11.1422
  13. de Vos R, Bovy A, Busink H, Muir S, Collins G, Verhoeyen M (2000) Improving health potential of crop plants by means of flavonoid pathway engineering. Polyphenols Cummun 1:25-26
  14. Debeaujon I, Peeters AJM, Leon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853-871 https://doi.org/10.1105/tpc.13.4.853
  15. Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M (1999) The BANTULS gene encodes a DFR-like protein and is a marker of earley seed coat development. Plant J 19:387-398 https://doi.org/10.1046/j.1365-313X.1999.00529.x
  16. Dixon RA (1999) Isoflavonoid: biochemistry, molecular biology, and biological functions, in Comprehensive Natural Products Chemistry (Vol. 1). (Sankawa, U. ed) pp 773-823
  17. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoid - a gold mine for metabolic engineering. Trends Plant Sci 4:394-400 https://doi.org/10.1016/S1360-1385(99)01471-5
  18. Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25:173-199 https://doi.org/10.1146/annurev.ge.25.120191.001133
  19. Dooner HK, Weck E, Adams S, Ralston E, Favreau M, English J (1985) A molecular genetic analysis of insertions in the bronze locus in maize. Mol Gen Genet 200:240-246 https://doi.org/10.1007/BF00425430
  20. Elomaa P, Holton T (1994) Modification of flower colour using genetic engineering. Biotechnol Eng Rev 12:63-88 https://doi.org/10.1080/02648725.1994.10647909
  21. Federoff NV, Furtek DB, Nelson OE (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator. Proc Natl Acad Sci ISA 81:3825-3829 https://doi.org/10.1073/pnas.81.12.3825
  22. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin in Biotech 12:155-160 https://doi.org/10.1016/S0958-1669(00)00192-0
  23. Forkmann G, Ruhhau B (1987) Distinct substrate specificity of dihydroflavonol 4-reductase from flowers of Petunia hybrida. Z Naturforsch C 42:1146-1148
  24. Goodrich J, Carpenter R, Coen ES (1992) A common gene regulates pigmentation pattern in diverse plant species. Cell 68:955-964 https://doi.org/10.1016/0092-8674(92)90038-E
  25. Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Melting JGT, Lu C-Y, Farcy E, Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276-279 https://doi.org/10.1038/366276a0
  26. Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071-1083 https://doi.org/10.1105/tpc.7.7.1071
  27. Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABTA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359-1375 https://doi.org/10.1105/tpc.001404
  28. Jung W, Yu O, Lau S, Keefe D, Odell J, Fader G, Mc Gonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isolfavones in legumes. Nat Biotechnol 18:208-212 https://doi.org/10.1038/72671
  29. Koes R, De Vetten N, Mol J (2000) Cytochrome $b_{5}$ form Petunia. PCT-international Patent Application No. WO 00/09720
  30. Kreuzaler F, Ragg H, Fautz E, Kuhn DN, Hahlbrock K (1983) UV-induction of chalcone synthase mRNA in cell suspension cultures of Petrosetinum hortense. Proc Natl Acad Sci USA 80:2591-2593 https://doi.org/10.1073/pnas.80.9.2591
  31. Larson, RL and Bussard JB (1986) Microsomal flavonoid 3'-monooxygenase from maize seedlings. Plant Physiol 86:483-486
  32. Lechelt C, Peterson T, Laird A, Chen J, Dellaporta SL, Dennis E, Peacock WJ, Starlinger P (1989) Isolation and molecular analysis ofthe maize Plocus. Mol Gen Genet 219:225-234
  33. Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci USA 86:7092-7096 https://doi.org/10.1073/pnas.86.18.7092
  34. Martens S, Forkmann G (1999) Cloning and expression of flavone synthase II from Gerbera hybiids. Plant J 20:611-618 https://doi.org/10.1046/j.1365-313X.1999.00636.x
  35. Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus.Plant J 1:37-49 https://doi.org/10.1111/j.1365-313X.1991.00037.x
  36. Mehdy MC, Lamb CJ (1987) Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J 6:1527-1533
  37. Menssen A, Hohmann S, Martin W, Schnable PS, Peterson PA, Saedler H, Gierl A (1990) The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J 9:3051-3057
  38. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new Petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:667-678 https://doi.org/10.1038/330667a0
  39. Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212-217 https://doi.org/10.1016/S1360-1385(98)01242-4
  40. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, De Vos CHR, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470-474 https://doi.org/10.1038/88150
  41. Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863-1878 https://doi.org/10.1105/tpc.12.10.1863
  42. Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetter N, Mol J, Koes R (1999) Molecular analysis of the anthocyanin 2 gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433-1444 https://doi.org/10.1105/tpc.11.8.1433
  43. Reddy AR, Britsch L, Salamini F, Saelder H, Rohde W (1987) The A1 (Anthocyanin-1) locus in Zea mays encodes dihydroquercetin reductase. Plant Sci 52:7-13 https://doi.org/10.1016/0168-9452(87)90098-7
  44. Robbins M, Bavage A, Strudwicke C, Morris P (1998) Genetic manipulation of condensed tannins in higher plants. Plant Physiol 116:1133-1144 https://doi.org/10.1104/pp.116.3.1133
  45. Setchell K (1998) Phytoestrogens: The biochemistry, Physiology and implication for human health of soy isoflavones. Am J Clin Nutr 68:1333S-1346S https://doi.org/10.1093/ajcn/68.6.1333S
  46. Setchell K, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nut 129:758S-767S https://doi.org/10.1093/jn/129.3.758S
  47. Spelt C, Quattrocchio F, Mol JNM, Koes R (2000) Anthocyanin 1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619-1631 https://doi.org/10.1105/tpc.12.9.1619
  48. Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the acyl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367:146-150 https://doi.org/10.1006/abbi.1999.1238
  49. Stich K, Edenberger T, Wurst F, Forkmann G (1992) Enzymatic conversion of dihydroflavonols to f1avan-3,4-diols using flower extracts of Dian.thus caryophyttus L. (carnation). Planta 187: 103-108
  50. Tanaka Y, Tsuda S, Kusumi T (1998) Metabolic engineering to modify flower colour. Plant Cell Physiol 39:1119-1126 https://doi.org/10.1093/oxfordjournals.pcp.a029312
  51. Vainstein A, Zuker A, Ovadis M (2000) Transgenic plants and method for transforming carnations. PCT-International Patent Application No. WO 00/50613
  52. van Tunen AJ, Hartman SA, Mur LA, Mol JNM (1989) Regulation of chalcone isomerase (CHI) gene expression in Petunia hybrida. The use of alternative promoters in corolla, anthers and pollen. Plan Mol Biol 12:539-551 https://doi.org/10.1007/BF00036968
  53. van Tunen AJ, Koes RE, Spelt CE, van der Krol AR, Stuitje AR, Mol JNM (1988) Cloning of the two chalcone flavanone isomerase genes form Petunia hybrida: Coordinate, lightregulated and differential expression of flavonoid genes. EMBO J 4:1257-1263
  54. Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Siinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA 1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1257-1263 https://doi.org/10.1105/tpc.11.7.1337
  55. Weisshaar B, Armstrong GA, Block A, da Costa e Silva O, Hahlbrock K (1991) Light-inducible and constitutively expressed DNA-binding proteins recognizing a plant promotor element with functional relevance in light responsiveness. EMBO J 10:1777-1786
  56. Mnkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485-493 https://doi.org/10.1104/pp.126.2.485
  57. Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781-793 https://doi.org/10.1104/pp.124.2.781

Cited by

  1. Comparison of transcriptome analysis between red flash peach cultivar and white flash peach cultivar using next generation sequencing vol.39, pp.4, 2012, https://doi.org/10.5010/JPB.2012.39.4.273