Electrical Properties of PVdF/PVP Composite Filled with Carbon Nanotubes Prepared by Floating Catalyst Method

  • Kim, Woon-Soo (Division of Ceramic and Chemical Engineering, Myongji University) ;
  • Song, Hee-Suk (Division of Ceramic and Chemical Engineering, Myongji University) ;
  • Lee, Bang-One (Division of Ceramic and Chemical Engineering, Myongji University) ;
  • Kwon, Kyung-Hee (Division of Ceramic and Chemical Engineering, Myongji University) ;
  • Lim, Yun-Soo (Division of Ceramic and Chemical Engineering, Myongji University) ;
  • Kim, Myung-Soo (Division of Ceramic and Chemical Engineering, Myongji University)
  • Published : 2002.10.01

Abstract

The multi-wall carbon nanotubes (MWNTs) with graphite crystal structure were synthesized by the catalytic decomposition of a ferrocene-xylene mixture in a quartz tube reactor to use as the conductive filler in the binary polymer matrix composed of poly(vinylidene fluoride) (PVdF) and poly(vinyl pyrrolidone) (PVP) for the EMI (electromagnetic interference) shielding applications. The yield of MWNTS was significantly dependent on the reaction temperature and the mole ratio of ferrocene to xylene, approaching to the maximum at 800 $^{\circ}C$ and 0.065 mole ratio. The electrical conductivity of the MWNTs-filled PVdF/PVP composite proportionally depended on the mass ratio of MWNTs to the binary polymer matrix, enhancing significantly from 0.56 to 26.7 S/cm with the raise of the mass ratio of MWNTs from 0.1 to 0.4. Based on the higher electrical conductivity and better EMI shielding effectiveness than the carbon nanofibers (CNFs)-filled coating materials, the MWNTs-filled binary polymer matrix showed a prospective possibility to apply to the EMI shielding materials. Moreover, the good adhesive strength confirmed that the binary polymer matrix could be used for improving the plastic properties of the EMI shielding materials.

Keywords

References

  1. Nature v.354 S. Iijima https://doi.org/10.1038/354056a0
  2. Nature v.381 M. J. Treacym;T. W. Ebbsen;J. M. Gibson https://doi.org/10.1038/381678a0
  3. J. Mat. Sci. v.33 R. Z. Ma;J. Wu;B. Q. Wei;J. Liang;D. H. Wu https://doi.org/10.1023/A:1004492106337
  4. Nature v.358 T. W. Ebbesen;P. M. Ajayan https://doi.org/10.1038/358220a0
  5. Nature v.388 C. Journet;W. K. Maser;P. Bernier;A. Loiseau;M. L. de la Chapelle;S. Lefrant;P. Deniard;R. Lee;J. E. Fischer https://doi.org/10.1038/41972
  6. J. Phys. Chem. v.99 T. Guo;P. Nikolaev;A. G. Rinzler;D. Tomane;D. T. Colbert;R. E. Smalley https://doi.org/10.1021/j100027a002
  7. Chem. Phys. Lett v.278 M. Yudasaka;T. Komatsu;T. Ichihashi;S. Iijima https://doi.org/10.1016/S0009-2614(97)00952-4
  8. Proceeding of the 8th Internatiional Symposium on Solar Thermal Concentrating Technology C. L. Fields;J. R. Pitts;D. Mischler;C. Bingham;A. Lewandowski;D. L. Schulz;T. A. Bekkedahl;K. M. Jones;M. J. Heben
  9. Synthetic Metals v.77 K. Hernadi;A. Fonseca;J. B. Nagy;D. Bernaert;J. Riga;A. Lucas https://doi.org/10.1016/0379-6779(96)80051-8
  10. Chem. Phys. Lett. v.262 W. K. Hsu;M. Terrones;J. P. Hare;H. Terrones;H. W. Kroto;D. R. M. Walton https://doi.org/10.1016/0009-2614(96)01041-X
  11. Adv. Mat. v.11 M. S. P. Shaffer;A. H. Windle https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
  12. Macromol. Mater. Eng v.286 B. O. Lee;W. J. Woo;M.-S. Kim https://doi.org/10.1002/1439-2054(20010201)286:2<114::AID-MAME114>3.0.CO;2-8
  13. Polymer (Korea) v.25 M.-S. Kim;B. O. Lee;W. J. Woo;K.-H. An
  14. J. Electroanal. Chem. v.484 J. Navarro-Laboulais;J. Vilaplana;J. Lopez;J. J. Garcia Jareno;D. Benito;F. Vicente https://doi.org/10.1016/S0022-0728(00)00039-5
  15. Mat. Lett. v.43 X. Liang;L. Ling;C. Lu;L. Liu https://doi.org/10.1016/S0167-577X(99)00247-5
  16. Chem. Phys. Lett v.303 R. Andrew;D. Jacques;A. M. Rao;F. Derbyshire;D. Qian;X. Fan;E. C. Dickey;J. Chen https://doi.org/10.1016/S0009-2614(99)00282-1
  17. Carbon Sci. v.3 H.-S Song;E.-J Kang;M.-S. Kim
  18. J. Ind. Eng. Chem. v.7 B. O. Lee;W. J. Woo;H.-S Park;H.-S Hahm;J. P. Wu;M.-S Kim
  19. Master Dissertation H.-S Song
  20. Supercarbon S. Yoshimura;R. P. H. Chang;U. Gonser;R. Hull;R. M. Osgood;H. Sakai
  21. J. of the Kor. Ceramic Soc. v.37 M.-S. Kim;B. O. Lee;W. J. Woo;K.-H. An
  22. J. Membr. Sci. v.163 D. Wang;K. Li;W. K. Teo https://doi.org/10.1016/S0376-7388(99)00181-7
  23. Polymer v.43 N. Chem;L. Hong
  24. Mater. Sci. and Eng. A v.302 S.-S. Tzeng;F.-Y Chang https://doi.org/10.1016/S0921-5093(00)01824-4