Fire Resistance Study of PP Thermoplastic Composites with Particulate Reinforcements and Br Flame Retardants

무기 입자 강화제와 브롬(Br) 난연제에 따른 폴리프로필렌 복합재료의 난연성 향상에 관한 연구

  • 곽성복 (덕양산업(주)) ;
  • 황성덕 (성균관대학교 고분자공학과) ;
  • 남재도 (성균관대학교 고분자공학과) ;
  • 고재송 (산자부 기술표준원 생물환경과) ;
  • 최형기 (산자부 기술표준원 생물환경과)
  • Published : 2002.03.01

Abstract

The fire resistance of particulate polypropylene composite systems were investigated by using various reinforced particles such as zeolite, talc, $CaCO_3$ particles. In this study, The effect of particle size on the thermal properties of composite and the effect of reinforced particles on the fire resistance were studied. The inorganic reinforced particles used in this study were recycled zeolite(average particle diameter=85.34 $mu extrm{m}$), $CaCO_3$ (33.93 $mu extrm{m}$), and talc (18.51 $mu extrm{m}$). The fire resistance of composite systems was thoroughly examined by measuring limited oxygen index (LOI, ASTM D2863) and cone calorimetry (ASTM E1354, ISO 5660). Thermal stability of composite systems was thoroughly examined by measuring TGA. The flame retardants (DBDPO) and reinforced particles reduce the maximum heat release rate (M-HRR) in the order of Talc > $CaCO_3$ > recycled Zeolite. Comparing the cone calorimetry experimental results of the particle reinforced polymer composite system exhibited twice higher efficiency than DBDPO in polypropylene systems, and the LOI also showed similar trends to the cone calorimetry experiments. The optical and scanning electron microscopy techniques were used to investigate the composites ash layer and the core fracture surfaces in the burning process. The reinforcing inorganic particles seemed to accumulate at the surface of ash layer, and subsequently intercept the oxygen transport and heat transfer into the core area.

본 연구에서는 범용 열가소성수지인 폴리프로필렌에 다양한 입자 강화제로 무기질 폐기 제올라이트, 탈크, 탄산칼슘 등을 첨가하여 소재를 복합재료화 하였다. 또한 입자 사이즈에 따른 열안정성과 입자 강화제에 따른 난연 특성을 확인하였다. 본 연구에서는 입도 분석 결과 폐기 제올라이트가 85.34 $mu extrm{m}$, 탄산칼슘이 33.93 $mu extrm{m}$, 탈크가 18.51 $mu extrm{m}$의 평균 입자 크기를 가지고 있는 것을 확인하였다. 난연성 측정으로 산소지수(LOI, ASTM D2863)와 콘 칼로리미터 (ASTM E1354 ISO 5660)를 사용하였으며, 열 안정성 측정으로는 TGA를 사용하였다. 입자 강화제와 난연제 DBDPO를 사용한 결과 최대 열 방출 속도(M-HRR)는 탈크>탄산칼슘>폐기 제올라이트 순으로 감소됨을 확인하였다. 콘 칼로리미터 실험 결과, 난연제 DBDPO만 혼합하였을 경우보다 입자 강화제를 첨가 혼합하였을 경우가 난연 효율이 대략 2배 정도 향상됨을 확인하였다. 또한 산소지수 결과도 콘 칼로리미터와 유사한 경향을 보임을 확인하였다. 광학현미경(OM)과 주사전자현미경(SEM)을 사용하여 입자 강화된 복합재료의 연소되는 과정의 단면을 연소 단계별로 관찰함으로써 연소 표면에서의 입자 강화제의 배열 양상 및 산소 공급의 특성 등을 연구하였다.

Keywords

References

  1. The Monthly Plastic Korea v.8 Korea Plastic Cooperative Society
  2. Flame Retardancy of Polymeric Materials v.1~4 W. C. Kuryla;A. J. Papa
  3. Hwahak Konghak v.15 Y. I. Mok
  4. Fillers G. Wypych
  5. Handbook of Fillers and Reinforcements for Plastics H. S. Katz;J. V. Milewski
  6. Particulate Filled Polymer Composites R. Rothon
  7. Thermoplastics Polymer Additives J. Green;J. T. Lutz, Jr(ed.)
  8. J. Appl. Polym. Sci. v.58 A. Torikai;K. I. Chigita;F. Okisaki;M. Nagata https://doi.org/10.1002/app.1995.070580401
  9. Polymer(Korea) v.24 S. B. Kwak;C. H. Jung;J. D. Nam;J. H. Kim;M. A Choi;J. H Kong
  10. ASTM D2863-91
  11. ISO 4589
  12. Eur. Polym. J. v.58 C. F. Cullis;M. M. Hirschiler;R. G. Madden
  13. J. Appl. polym. Sci. v.49 M. S. Karaivanova;K. M. Gjurova https://doi.org/10.1002/app.1993.070490119
  14. ASTM E1354-94
  15. ISO 5660-1
  16. Polym. Eng. Sci. v.33 L. J. Goff https://doi.org/10.1002/pen.760330808
  17. ANTEC '96 A. F. Grand
  18. Polym. Degrad. Stab. v.64 M. Checchin;C. Cecchini;B. Cellarosi;F. O. Sam https://doi.org/10.1016/S0141-3910(98)00131-1
  19. Polym. Degrad. Stab. v.56 J. X. Thomas;A. W. Charles https://doi.org/10.1016/S0141-3910(96)00197-8
  20. Polym. Degrad. Stab. v.58 P. A. Cusack;M. S. Heer;A. W. Monk https://doi.org/10.1016/S0141-3910(97)00055-4
  21. Mathl. Computer. Modelling v.24 M. I. Nelson;J. Brindley;A. Mcintosh
  22. Polymer v.39 S. H. Chiu;W. K. Wang https://doi.org/10.1016/S0032-3861(97)00492-8
  23. Heat Release in Fires V. Babrauskas;S. J. Grayson
  24. Combustion and Flame. v.120 J. C. Yang;A. Hamins;M. K. Donnelly https://doi.org/10.1016/S0010-2180(99)00084-X
  25. Polym. Degrad. Stab. v.68 B. Li. https://doi.org/10.1016/S0141-3910(00)00002-1
  26. ANTEC '96 Polydibromostyrene: Flame Retardant for Plastics. G. Zingde
  27. Polym. Degrad. Stab. v.64 M. Longerey;J. M. Lopez cuesta;P. Gaudon;A. Crespy https://doi.org/10.1016/S0141-3910(98)00147-5
  28. Polym. Degrad. Stab. v.67 J. P. Gibert;J. M. Lopez cuesta;A. Bergeret;A. Crespy https://doi.org/10.1016/S0141-3910(99)00142-1
  29. Polym. Degrad. Stab. v.57 P. P. Lizymol;S. Thomas https://doi.org/10.1016/S0141-3910(96)00231-5
  30. Polym. Degrad. Stab. v.61 A. Baudry;N. R. Dufay;B. Mortaigne https://doi.org/10.1016/S0141-3910(97)00230-9
  31. Polymer v.38 D. J. Liaw;P. Chang https://doi.org/10.1016/S0032-3861(97)00105-5