Optical and Swelling Properties of Photocrosslinked Cholesteric Gels Based on Acrylic Acid Esters of Hydroxypropyl Cellulose

Hydroxypropyl Cellulose의 Acrylic Acid Ester들을 광가교에 의해 제조한 Cholesteric 겔들의 광학 및 팽윤 성질

  • 정승용 (단국대학교 고분자공학과) ;
  • 최정훈 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Published : 2002.07.01

Abstract

A new hydroxypropylcellulose (HPC) capable of exhibiting reflection colours in the temperature ranges of about 60-$130^{\circ}C$ and acrylic acid esters of HPC (ESs) with degree of esterification (DE) ranging from 1 to 3 were synthesized. The crosslinked ES films with the optical pitch ($\lambda_m$) ranging throughout the visible region were also prepared by exposing thermotropic cholesteric phases of ESs with a DE of more than 2 to UV light at $50^{\circ}C$. The thermal and optical properties for both the uncrosslinked and crosslinked samples and the swelling behavior of the crosslinked films in acetone were investigated. The $\lambda_m$'s of ESs, as well as HPC itself, increased with temperature. However, the $\lambda_m$'s of ESs were larger than of HPC at the same temperature and decreased with increasing DE. The temperature dependence of $\lambda_m$of the crosslinked samples was much weaker than that of ESs. Moreover, in contrast with ESs that exhibit a decrease of the isotropization temperature with increase in the DE, the networks were found to decompose at about $210^{\circ}C$, giving no transition to an isotropic state. The crosslinked samples exhibited an anisotropic swelling, suggesting that the two-dimensional crosslinking preferentially performs between ES molecules.

약 60-$130^{\circ}C$의 온도범위에서 cholesteric 반사색깔을 나타내는 새로운 히드록시프로필셀룰로오스 (HPC)와 에스테르화도 (DE)가 1-3 범위의 값을 갖는 HPC의 아크릴산 에스테르들 (ESs)을 제조하였다. 또한 DE가 2 이상인 ESs가 $50^{\circ}C$에서 나타내는 열방성 cholesteric 상에 UV광을 조사시킴에 의해 광학 pitch ($\lambda_m$)가 전 가시광 파장영역에 존재하는 ES 가교필름들을 제조하였다. 미가교와 가교시료들에 대한 열 및 광학 특성과 아세톤 중에서의 가교필름의 팽윤거동을 검토 하였다. HPC 자체와 동일하게 ESs의 $\lambda_m$은 온도가 증가함에 따라 증가하였다. 그러나 동일한 온도에서 나타내는 $\lambda_m$은 ES가 HPC에 비해 크며 ES의 $\lambda_m$은 DE가 증가함에 따라 감소하였다. 가교시료들의 $\lambda_m$의 온도의존성은 ESs에 비해 대단히 약하였다. 또한, ESs는 DE가 증가함에 따라 낮은 액정상에서 등방상의 액체로의 전이온도를 나타내는 것과는 판이하게, 가교물질들은 액체상으로의 전이를 일으키지 않으며 약 $210^{\circ}C$에서 분해가 일어나는 것으로 나타났다. 가교필름들은 이방성 팽윤을 나타내었으며, 이러한 사실은 ES분자들간에 2차원적인 가교가 우선적으로 일어남을 시사한다.

Keywords

References

  1. J. Appl. Polym. Sci.,Part A: Polym. Chem. v.37 C.-S. Hsu;H.-L. Chen https://doi.org/10.1002/(SICI)1099-0518(19991101)37:21<3929::AID-POLA8>3.0.CO;2-9
  2. Polymer v.40 U. Caruso;L. Hatfull; A. Roviello;A. Sirigu https://doi.org/10.1016/S0032-3861(98)00871-4
  3. Macromolecules v.32 S. Kurihara;A. Sakamoto;T. Nonaka https://doi.org/10.1021/ma9819081
  4. Macromol. Chem. Phys. v.199 M. Pfaffernoschke;J.Rubner;J.Springer https://doi.org/10.1002/(SICI)1521-3935(19981001)199:10<2247::AID-MACP2247>3.0.CO;2-U
  5. Macromolecules v.28 S. Disch;H. Finkelmann;H. Ringsdorf;P. Schuhmacher https://doi.org/10.1021/ma00111a041
  6. J. Polym. Sci.,Part B: Polym. Phys. v.37 J. W. Schultz;J. Bhatt;R. P.Chartoff;R. T. Pogue;J. S. Ullett. https://doi.org/10.1002/(SICI)1099-0488(19990601)37:11<1183::AID-POLB12>3.0.CO;2-F
  7. J. Macromol. Sci. v.A34 no.7 A. Stohr;P. Strohriegl.
  8. Macromol. Chem. Phys. v.199 A. Stohr;P. Strohriegl https://doi.org/10.1002/(SICI)1521-3935(19980501)199:5<751::AID-MACP751>3.0.CO;2-3
  9. Macromol. Chem. Phys. v.199 H. R. Kricheldorf;T. Krawinkel. https://doi.org/10.1002/(SICI)1521-3935(19980501)199:5<783::AID-MACP783>3.0.CO;2-K
  10. Macromolecules v.23 R. Kishi;M. Sisido;S. Tazuke https://doi.org/10.1021/ma00218a011
  11. Mol. Cryst. Liq. Cryst. v.99 S. N. Bhadani;D. G. Gray https://doi.org/10.1080/00268948308072026
  12. J. Mater. Sci. v.8 S. Suto;M. Yoshinaka
  13. Polymer v.36 T. Yamagishi;P. Sixou https://doi.org/10.1016/0032-3861(95)95313-P
  14. Polymer v.38 S. Suto;K. Suzuki https://doi.org/10.1016/S0032-3861(96)00512-5
  15. J. Appl. Polym. Sci. v.73 S. Suto;K. Kawamoto https://doi.org/10.1002/(SICI)1097-4628(19990808)73:6<1015::AID-APP20>3.0.CO;2-K
  16. Polymer(Korea) v.25 K.-H. Kim;S.-Y. Jeong;Y.-D. Ma
  17. Polymer(Korea) v.24 Y.-D. Ma;K. -H. Kim
  18. Acta Crystallogr. v.4 H. de Vires https://doi.org/10.1107/S0365110X51000751
  19. Polymer(Korea). v.25 S.-Y. Jeong;J.-H. Jeong;Y.-D. Ma;Y. Tsujii
  20. Polym. J. v.33 Y. Dong;Q. Yuan;Y. Wu;J. Wand;M. Wand
  21. J. Appl. Polym. Sci. v.76 Y. Dong;Q. Yuan;Y. Wu;M. Wand https://doi.org/10.1002/(SICI)1097-4628(20000628)76:14<2057::AID-APP8>3.0.CO;2-I
  22. J. Polym. Sci., Part B:Polym. Phys. v.38 Y. Dong;Q. Yuan;Y. Huang https://doi.org/10.1002/(SICI)1099-0488(20000401)38:7<980::AID-POLB8>3.0.CO;2-4
  23. Polymer v.42 J. M. G. Cowie;V. Arrighi;J. Carmeron;I. McEwan;I. J. McEwen https://doi.org/10.1016/S0032-3861(01)00483-9
  24. J. Polym. Sci., Part B:Polym. Phys. v.32 I. Rusig;M. H. Godinho;L. Varichon;P. Sixou;J. Dedier;C. Filliatre;A. F. Martins https://doi.org/10.1002/polb.1994.090321108
  25. Polym. Bull. v.32 T. Yamagishi;F. Guittard;M. H. Godinho;A. M. Martins;A. Cambon;P.Sixou https://doi.org/10.1007/BF00297413
  26. Macromolecules v.22 J.-X. Guo;D. G. Gray. https://doi.org/10.1021/ma00195a011
  27. Macromolecules v.30 S. Kurihara;M. Ishii;T. Nonaka https://doi.org/10.1021/ma961008p
  28. Macromol. Symp. v.99 T. Fukuda;Y. Tsujii;T. Miyamoto. https://doi.org/10.1002/masy.19950990127
  29. J. Polym. Sci.,Part B:Polym. Phys. v.24 G. V. Laivins;P. Sixou;D. G. Gray https://doi.org/10.1002/polb.1986.090241213
  30. Macromolecules v.21 J. W. Mays https://doi.org/10.1021/ma00189a009
  31. Polym. Sci. U.S.S.R.(Engl. Tranl.) v.29 Y.P. Shibayev;Y.V. Yekayeva https://doi.org/10.1016/0032-3950(87)90215-2
  32. J. Appl. Polym. Sci. v.76 P. Wojciechowski https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<837::AID-APP9>3.0.CO;2-P
  33. Polymer v.39 T. Kondo;T. Miyamoto https://doi.org/10.1016/S0032-3861(97)85752-7
  34. Macromolecules v.22 J.-X. Guo;D. G. Gray. https://doi.org/10.1021/ma00195a012
  35. Macromolecules v.20 J. Watanabe;M. Goto;T. Nagase https://doi.org/10.1021/ma00168a011
  36. Ph.D. dissertation T. Yamagishi
  37. Liquid Crystalline and Mesomorphic Polymer V. P. Shibaev;Ya. S. Freidzon;S. G. Kostromin;V. P. Shibaev(ed.);L. Lam(ed.)
  38. Polymer Science and Technology v.8 Y.-D. Ma