DOI QR코드

DOI QR Code

THE EFFECT OF IRRADIATION MODES ON POLYMERIZATION AND MICROLEAKAGE OF COMPOSITE RESIN

광조사 방식이 복합레진의 중합과 누출에 미치는 영향

  • Park, Jong-Jin (Department of Conservative Dentistry, School of Dentistry, Kyungpook National University) ;
  • Park, Jeong-Won (Department of Conservative Dentistry, School of Dentistry, Kyungpook National University) ;
  • Park, Sung-Ho (Department of Conservative, College of Dentistry, Yonsei Univesity) ;
  • Park, Ju-Myong (Department of Conservative Dentistry, School of Dentistry, Kyungpook National University) ;
  • Kwon, Tae-Kyung (Department of Conservative Dentistry, School of Dentistry, Kyungpook National University) ;
  • Kim, Sung-Kyo (Department of Conservative Dentistry, School of Dentistry, Kyungpook National University)
  • 박종진 (경북대학교 치과대학 치과보존학교실) ;
  • 박정원 (경북대학교 치과대학 치과보존학교실) ;
  • 박성호 (연세대학교 치과대학 보존학교실) ;
  • 박주명 (경북대학교 치과대학 치과보존학교실) ;
  • 권태경 (경북대학교 치과대학 치과보존학교실) ;
  • 김성교 (경북대학교 치과대학 치과보존학교실)
  • Published : 2002.03.01

Abstract

The aim of this study was to investigate the effect of light irradiation modes on polymerization shrinkage, degree of cure and microleakage of a composite resin. VIP$^{TM}$ (Bisco Dental Products, Schaumburg, IL, USA) and Optilux 501$^{TM}$ (Demetron/Kerr, Danbury, CT, USA) were used for curing Filtek$^{TM}$ Z-250 (3M Dental Products, St. Paul., MN, USA) composite resin using following irradiation modes: VIP$^{TM}$ (Bisco) 200mW/$\textrm{cm}^2$ (V2), 400mW/$\textrm{cm}^2$ (V4), 600mW/$\textrm{cm}^2$ (V6), Pulse-delay (200 mW/$\textrm{cm}^2$ 3 seconds, 5 minutes wait, 600mW/$\textrm{cm}^2$ 30seconds, VPD) and Optilux 501$^{TM}$ (Demetron/Kerr) C-mode (OC), R-mode (OR). Linear polymerization shrinkage of the composite specimens were measured using Linometer (R&B, Daejeon, Korea) for 90 seconds for V2, V4, V6, OC, OR groups and for up to 363 seconds for VPD group (n=10, each). Degree of conversion was measured using FTIR spectrometer (IFS 120 HR, Bruker Karlsruhe, Germany) at the bottom surface of 2 mm thick composite specimens V2, Y4, V6, OC groups were measured separately at five irradiation times (5, 10, 20, 40, 60 seconds) and OR, VPD groups were measured in the above mentioned irradiation modes (n=5 each). Microhardness was measured using Digital microhardness tester (FM7, Future-Tech Co., Tokyo, Japan) at the top and bottom surfaces of 2mm thick composite specimens after exposure to the same irradiation modes as the test of degree of conversion(n=3, each). For the microleakage test, class V cavities were prepared on the distal surface of the ninety extracted human third molars. The cavities were restored with one of the following irradiation modes : V2/60 seconds, V4/40 seconds, V6/30 seconds, VPD , OC and OR. Microleakage was assessed by dye penetration along enamel and dentin margins of cavities. Mean polymerization shrinkage, mean degree of conversion and mean microhardness values for all groups at each time were analyzed using one-way ANOVA and Duncan's multiple range test, and using chi-square test far microleakage values. The results were as follows : . Polymerization shrinkage was increased with higher light intensity in groups using VIP$^{TM}$ (Bisco) : the highest with 600mW/$\textrm{cm}^2$, followed by Pulse-delay, 400mW/$\textrm{cm}^2$ and 200mW/$\textrm{cm}^2$ groups, The degree of polymerization shrinkage was higher with Continuous mode than with Ramp mode in groups using Optilux 501$^{TM}$ (Demetron/Kerr). . Degree of conversion and microhardness values were higher with higher light intensity. The final degree of conversion was in the range of 44.7 to 54.98% and the final microhardness value in the range of 34.10 to 56.30. . Microleakage was greater in dentin margin than in enamel margin. Higher light intensity showed more microleakage in dentin margin in groups using VIP$^{TM}$ (Bisco). The microleakage was the lowest with Continuous mode in enamel margin and with Ramp mode in dentin margin when Optilux 501$^{TM}$ (Demetron/Kerr) was used.

Filtek$^{TM}$ Z-250(3M Dental Products, St. Paul., MN. USA) 광중합형 복합레진을 대상으로 다양한 광조사 방식이 중합수축, 중합도 및 미세누출에 미치는 영향을 알아보고자 하였다. VIP$^{TM}$(Bisco Dental Products, Schaumburg, IL, USA)를 이용하여 200, 400 및 600mW/$\textrm{cm}^2$의 일정한 광도로 중합시킨 세 군(V2, V4 및 V6군)과 200mW/$\textrm{cm}^2$의 광도로 3초간 중합시키고 5분간 방치 한 후 다시 600mW/$\textrm{cm}^2$의 광도로 중합시키는 pulse-delay 방식을 이용한 군(VPD군) 그리고 Optilux 501$^{TM}$(Demetron/Kerr, Danbury, CT, USA)을 이용하여 C-mode와 R-mode로 중합시킨 두 군(OC군, OR군) 등 모두 6개의 군으로 나누어 실험하였으며, 복합레진의 중합과 누출을 다음의 네 가지 방법으로 측정하였다. 첫째, V2, V4, V6, OC군은 60초간, OR군은 20초간 그리고 VPD군은 두번째 광조사를 60초간 시행하면서 시간에 따른 선형 중합수축을 Linometer(R&B, Daejeon, Korea)로 측정하였다. 둘째, V2, V4, V6, OC군은 각각 5, 10, 20, 40, 60초간 그리고 OR군과 VPD군은 정해진 조건에 따라 중합시킨 2mm 두께 시편의 바닥면에서 시료를 채취한 후 KBr method로 시편을 제작하고, FTIR spectrometer(IFS 120 HR, Broker, Karlsruhe, Germany)로 미반응 잔류단량체의 양을 계측하여 중합도를 측정하였다. 셋째, 두번째 실험과 같은 조건으로 중합시킨 2mm 두께 시편의 광조사면과 바닥면에서 중합 10분 후 미세경도 측정기(FM7, Future-Tech Co., Tokyo, Japan)로 500g의 하중을 10초간 가하여 Knoop Hardness Number(KHN) 값을 측정하였다. 끝으로, 90개의 발거치 치경부에 제5급 와동을 형성하고 V2군은 60초간, V4군은 40초간, V6군은 30초간 그리고 OC, OR, VPD군은 정해진 조건에 따라 중합시킨 후, methylene blue 용액에 침적시키고 종절단하여 법랑질과 상아질 변연의 미세누출 정도를 측정하였다. 중합수축. 중합도 및 미세경도 측정치는 one-way ANO-VA와 Duncan's multiple range test를, 변연누출 정도는 chi-square test를 이용, 통계처리하여 다음의 결과를 얻었다. . 중합수축의 정도는 VIP$^{TM}$(Bisco) 사용군에서 전체 조사광도가 높을수록 큰 경향을 보여 600mW/$\textrm{cm}^2$군에서 가장 크게 나타났고, 그 다음으로 Pulse-delay군, 400mW/$\textrm{cm}^2$군, 200 mW/$\textrm{cm}^2$군 순이었고, Optilux 501$^{TM}$(Demetron/Kerr) 사용군에서는 Continuous 방식이 Ramp 방식 보다 크게 나타났다. . 중합도와 미세경도 값은 공히, 전체 조사광도가 높을수록 높게 나타났으며 , 최종 중합도는 44.77~54.98%의 범위를, 미세경도 값은 34.10~56.30의 범위를 보였다. . 미세누출은 전반적으로 상아질 변연이 법랑질 변연에 비해 많았고, VIP$^{TM}$(Bisco) 사용 군에서는 광도가 높을수록 상아질 변연에서 미세누출이 증가하는 양상을 보였으며, 법랑질 변연에서는 Optilux 501$^{TM}$(Demetron/Kerr)의 Continuous 방식이, 상아질 변연에서는 Ramp 방식이 가장 적은 미세누출을 보였다.

Keywords

References

  1. Burke F. J. : Light-activated composites: the current status. Dent. Update. 12:182. 184-188. 1985
  2. Rueggeverg F. A., Caughman W. F. and Curtis J. W. Jr. : Effect of light intensity and exposure duration on cure of resin composite. Oper. Dent., 19:26-32, 1994
  3. Venhoven B. A.. De Gee A. J. and Davidson C. L. : Polymerization contraction and conversion of light-curing bisGMA-based methacrylate resins. Biomaterials, 14:871-875, 1993 https://doi.org/10.1016/0142-9612(93)90010-Y
  4. Feilzer A. J .. De Gee A. J. and Davidson C. L. : Curing contraction of composites and glass ionomer cements. J. Prosthet. Dent .. 59:297-300. 1988 https://doi.org/10.1016/0022-3913(88)90176-X
  5. Jensen M. E. and Chan D. C. N. : Polymerization shrinkage and microleakage. In: Vanherle G. Smith DC (eds). Posterior composite resin dental restorative materials. ed 1, Utrecht, The Netherlands: szulc, 243, 1985
  6. Carvalho R. M.. Pereira J. C.. Yoshiyama M. and Pashley D. H. : A review of polymerization contraction : The influence of stress development versus stress relief. Oper. Dent. 21:17-24, 1996
  7. Suliman A. A., Boyer D. B. and Lakes R. S. : Cusp movement in premolars resulting from composite polymerization shrinkage. Dent. Mater., 9:6-12. 1993 https://doi.org/10.1016/0109-5641(93)90096-9
  8. Hickman J. and Jacobsen P. H. : Finite element analysis of dental polymeric restorations. Clin. Mater., 7:39-46, 1991 https://doi.org/10.1016/0267-6605(91)90055-K
  9. Tarumi H., Imazato S., Ehara A., Kato S., Ebi N. and Ebisu S. : Post-irradiation polymerization of composites containing bis-GMA and TEGDMA. Dent. Mater., 15:238-242. 1999 https://doi.org/10.1016/S0109-5641(99)00040-8
  10. Miyazaki M., Hinoura K., Onose H. and Moore B. K. : Effect of filler content of light cured composites on bond strength to bovine dentin. J. Dent.. 19:301-303, 1991 https://doi.org/10.1016/0300-5712(91)90078-D
  11. Feilzer A. J., De Gee A. J. and Davidson C. L. : Quantitative determination of stress reduction by flow in composite restorations. Dent. Mater. 6:167-171. 1990 https://doi.org/10.1016/0109-5641(90)90023-8
  12. Asmussen E. : Clinical relevance of physical, chemical and bonding properties of composite resins. Oper. Dent., 2:251-256. 1985
  13. Feilzer A. J., De Gee A. J. and Davidson C. L. : Relaxation of polymerization contraction shear stress by hygroscopic expansion. J. Dent. Res., 69:36-39. 1990 https://doi.org/10.1177/00220345900690010501
  14. Feilzer A. J., De Gee A. J. and Davidson C. L. : Setting stress in composite resin in relation to configuration of the restoration. J. Dent. Res., 66:1636-1639, 1987 https://doi.org/10.1177/00220345870660110601
  15. Reinhardt K. J. : Effect of the light source on the marginal adaptation of composite fillings. Deutsche Zahn rzliche Zeitschriff. 46:132-134, 1991
  16. Pilo R. and Cardash H. S. : Post-irradiation polymerization of different anterior and posterior visible light-activated resin composites. Dent. Mater., 8:99-304, 1992
  17. Kemp-Scholte C. M. and Davidson C. L., : Complete marginal seal of class V resin composite restorations effected by increased flexibility. J. Dent. Res., 69:1240-1247, 1990a https://doi.org/10.1177/00220345900690060301
  18. Davidson C. L. and Davidson-Kaban S. S. : Handling of mechanical stresses in composite restorations. Dent. Update, 25:274-283, 1998
  19. Dauvillier B. S., Feilzer, A. J., de Gee A. J. and Davidson C. L. : Visco-elastic parameters of dental restorative materials during setting. J. Dent. Res., 79:818-825, 2000 https://doi.org/10.1177/00220345000790030601
  20. Lutz F., Krejci I. and Lodenburg T. R. : Elimination of polymerization stresses at the margins of posterior composite resin restorations: a new restorative technique. Quinte. Int., 17:777-784, 1986
  21. Lutz J. L., Masutani S., Setcos J. C., Lutz F.. Swartz M. L. and Phillips R. W. : Margin quality and microleakage of Class II composite resin restorations. J. Am. Dent. Assoc.. 114:49-57, 1987 https://doi.org/10.14219/jada.archive.1987.0045
  22. Winkler M. M.. Katona T. R. and Paydar N. H. : Finite element stress analysis of three filling techniques for class V light-cured composite restorations. J. Dent. Res., 75:1477-1484, 1996 https://doi.org/10.1177/00220345960750070701
  23. Davidson C. L. and Feilzer A. J. : Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J. Dent. 25:435-440, 1997 https://doi.org/10.1016/S0300-5712(96)00063-2
  24. Koran P. and Kurschner R. : Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization. Am. J. Dent. 11:17-22, 1998
  25. Uno S. and Asmussen E. : Marginal adaptation of a restorative resin polymerized at reduced rate. Scand. J. Dent. Res., 99: 440-444, 1991
  26. Davidson C. L. and De Gee A. J. : Relaxation of polymerization contraction stresses by flow in dental composites. J. Dent. Res., 63:146-148, 1984 https://doi.org/10.1177/00220345840630021001
  27. Sakaguchi R. L. and Berge H. X. : Effect of light intensity on polymerization contraction of posterior composite. J Dent. Res., 1997;76(lADR abstract):74, #481
  28. Feilzer A. J., Dooren L. H., De Gee A. J. and Davidson C. L. : Influence of light intensity on polymerization shrinkage and integrity of restoration-cavity interface. Eur. J. Oral Sci., 103:322-326, 1995 https://doi.org/10.1111/j.1600-0722.1995.tb00033.x
  29. Saliha S., Davidson-Kagan, Carel L., Davidson C. L., Feilzer A. J., De Gee A. J. and Nejdet E. : The effect of curing light variations on bulk curing and wall-to-wall quality of two types and various shades of resin composites. Dent. Mater., 13:344- 352, 1997 https://doi.org/10.1016/S0109-5641(97)80105-4
  30. Unterbrink G. L. and Muessner R. : Influence of light intensity on two restorative systems. J. Dent., 23:183-189, 1995 https://doi.org/10.1016/0300-5712(95)93577-O
  31. Goracci G., Mori G. and De Martinis L. C. : Curing light intensity and marginal leakage of resin composite restorations. Quinte. Inter., 27:355-362, 1996
  32. Dennison J. B., Yaman P., Seir R. and Hamilton J. C. : Effect of variable light intensity on composite shrinkage. J. Prosthet. Dent., 84:499-505, 2000 https://doi.org/10.1067/mpr.2000.110494
  33. Mehl A., Hickel R. and Kunzelmann K. H. : Physical properties and gap formation of light-cured composites with and without 'softstart-polymerization' . J. Dent., 25:321-330, 1997 https://doi.org/10.1016/S0300-5712(96)00044-9
  34. Koran P. and K rschner R. : Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization. Am. J. Dent., 10:17-22, 1998
  35. Sakaguchi R. L. and Berge H. X. : Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J. Dent., 26:695-700, 1998 https://doi.org/10.1016/S0300-5712(97)00048-1
  36. Burgess J. O., de Goes M., Walker R. and Ripps A. H. : An evaluation of four light-curing units comparing soft and hard curing. Pract. Periodontics Aesthet. Dent., 11:125-132, 1999
  37. Ernst C. P., K rschner R.. Rippin G. and Willershausen B. : Stress reduction in resin-based composites cured with a two-step light-curing unit. Am. J. Dent. 13:69-72, 2000
  38. Suh B. I. : Reducing the residual strain in composites with the pulse-delay cure technique. A. P. D. N., July-Sep.:4-7, 2000
  39. Kanca J. and Suh B. I. : Pulse activation : Reducing resin-based composite contraction stresses at the enamel cavosurface margins. Am. J. Dent., 12:107-112, 1999
  40. Feilzer A. J., De Gee A. J. and Davidson C. L. : Increased wall-to-wall curing contraction in thin bonded resin layers. J. Dent. Res., 86:48-50, 1989
  41. Tobolsky A. V., Leonard F. and Roeser G. P. : Use of polymerizable ring compounds in constant volume polymerizations. J. Polym. Sci., 3:604-611, 1948 https://doi.org/10.1126/science.3.68.604
  42. Sakaguchi R. L., Peters MCRB., Nelson S. R., Douglas W. H. and Poort H. W. : Effects of polymerization contraction in composite restorations. J. Dent. 20:178-182, 1992a https://doi.org/10.1016/0300-5712(92)90133-W
  43. Olive G. H. and Olive S. : Polymerisation katalise-kinetik mechanismen. Chemie. Weinheim Bergstra$\beta$e. 1979
  44. Harris J. S., Jacobsen P. H. and O' Doherty D. M. : The effect of curing light intensity and test temperature on the dynamic mechanical properties of two polymer composites. J. Oral Rehabil., 26:635-639, 1999 https://doi.org/10.1046/j.1365-2842.1999.00432.x
  45. Althoff O. and Hartung M. : Advances in light curing. Am. J. Dent. 13:77-84, 2000
  46. Davidson-Kahan S. S., Davidson C. L., Feilzer A. J., De Gee A. J. and Erdilek N. : The effect of curing light variations on bulk curing and wall-to-wall quality of two types and various shades of resin composites. Dent. Mater., 13:344-352, 1997 https://doi.org/10.1016/S0109-5641(97)80105-4
  47. Bouschlicher M. R., Rueggeberg F. A. and Boyer D. B. : Effect of stepped light intensity on polymerization force and conversion in a photoactivated composite. J. Esthet. Dent., 12:23-29, 2000 https://doi.org/10.1111/j.1708-8240.2000.tb00195.x
  48. Friedl K. H.. Schmalz G.. Hiller K. A. and Markl A. : Marginal adaptation of class V restorations with and without 'softstart-polymerization'. Oper. Dent., 25:26-32, 2000
  49. Price R. B., Bannerman R. A., Rizkalla A. S. and Hall G. C. : Effect of stepped vs. continuous light curing exposure on bond strengths to dentin. Am. J. Dent., 13:123-128, 2000
  50. Lai R. L. and Johnson A. E. : Measuring polymerization shrinkage of photoactivated restorative materials by a water filled dilatometer. Dent. Mater., 9:139-143, 1993 https://doi.org/10.1016/0109-5641(93)90091-4
  51. Rees J. S. and Jacobsen P. H. : The polymerization shrinkage of composite resins. Dent. Mater., 5:41-44, 1989 https://doi.org/10.1016/0109-5641(89)90092-4
  52. Puckett A. D. and Smith R. : Method to measure the polymerization shrinkage of light cured composites. J. Prosthet. Dent., 68:56-58, 1992 https://doi.org/10.1016/0022-3913(92)90285-I
  53. Cook W. D., Forrest M. and Goodwin A. A. : A simple method for the measurement of polymerization shrinkage in dental composites. Dent. Mater., 15:447-449, 1999 https://doi.org/10.1016/S0109-5641(99)00073-1
  54. De Gee A. J., Feilzer A. J. and Davidson C. L. : True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. dent. Mater. 9:11-14, 1993 https://doi.org/10.1016/0109-5641(93)90097-A
  55. Silikas N., Eliades G. and Watts D. C. : Light intensity effects on resin composite degree of conversion and shrinkage strain. Dent. Mater., 16:292-296, 2000 https://doi.org/10.1016/S0109-5641(00)00020-8
  56. Sakaguchi R. L., Sasik C. T., Bunczak M. A. and Douglas W. H. : Strain gauge method for measuring polymerization contraction of composite restoratives. J. Dent., 19:312-316, 1991 https://doi.org/10.1016/0300-5712(91)90081-9
  57. Ferracane J. L. : Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent. Mater., 1:11-14, 1985 https://doi.org/10.1016/S0109-5641(85)80058-0
  58. Ferracane J. L. and Greener E. H. : Fourier transform infrared analysis of degree of polymerization in unfilled resins - Methods comparison. J. Dent. Res., 63(8):1093-1096, 1984 https://doi.org/10.1177/00220345840630081901
  59. Asmussen E. : Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand. J. Dent. Res., 90:490-496, 1982
  60. Eliades G. C., Vougiouklakis G. J. and Caputo A. A. : Degree of double bond conversion in light-cured composites. Dent. Mater., 3:19-25, 1987 https://doi.org/10.1016/S0109-5641(87)80055-6
  61. DeWald J. P. and Ferracane J. L. : A comparison of four modes of evaluating depth of cure of light-activated composites. J. Dent. Res., 66(3):727-730, 1987 https://doi.org/10.1177/00220345870660030401
  62. Sakaguchi R. L., Douglas W. H. and Peters M. C. R. B. : Curing light performance and polymerization of composite restorative materials. J. Dent., 20:183-188, 1992 https://doi.org/10.1016/0300-5712(92)90136-Z
  63. Vankerckhoven H. et. al. : Unreacted methacrylate groups on the surfaces of composite resins. J. Dent. Res., 61:791-798, 1982 https://doi.org/10.1177/00220345820610062801
  64. Antonucci J. M. and Toth E. E. : Extent of polymerization of dental resins by differential scanning calorimetry. J. Dent. Res., 62:121-126, 1983 https://doi.org/10.1177/00220345830620020701
  65. Murray G. A., Yates J. L. and Newman S. M. : Ultraviolet light and ultraviolet light-activated composite resins. J. Prosthet. Dent., 46:167-170, 1981 https://doi.org/10.1016/0022-3913(81)90302-4
  66. Cook W. : Factors affecting the depth of cure of ultraviolet-polymerized composites. J. Dent. Res., 59:800-808, 1984 https://doi.org/10.1177/00220345800590050901
  67. Venz S. and Antonucci J. M. : Physical and chemical characteristics of dual cured dental composites. (abstract) J. Dent. Res., 67:225-231, 1988
  68. Chan K. C. and Boyer D. B. : Curing light-activated composite cement through porcelain. J. Dent. Res., 68:476-480, 1991 https://doi.org/10.1177/00220345890680030801
  69. Asmussen E. : Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scad. J. Dent. Res. 90:484-489, 1982
  70. Rueggeberg F. A. and Craig R. G. : Correlation of parameters used to estimate monomer conversion in a light-cured composite. J. Dent. Res., 67:932-937, 1983 https://doi.org/10.1177/00220345880670060801
  71. Yap A. U. J., Wang H. B., Siow K. S. and Gan L. M. : Polymerization shrinkage of visible-light-cured composites. Oper. Dent., 25:98-103, 2000
  72. 이상훈, 정일영, 노병덕 : 광중합형 레진에서 초기 저광도 광중합 및 연마시기가 변연부 미세누출에 미치는 영향. 대한치과보존학회지, 25:85-90, 2000
  73. 박은숙, 김기옥, 김성교 : 광조사 방식이 복합레진 수복물의 변연누출에 미치는 영향. 대한치과보존학회지, 26:263-272, 2001
  74. Frederick A. and Rueggeberg : Precision of hand-held dental radiometers. Quntess. Int., 24:391-396, 1993
  75. Nomoto R. Uchida K. and Hirasawa T. : Effect of light intensity on polymerization of light cured composite resins. Dent. Mater. J., 13:198-205, 1994 https://doi.org/10.4012/dmj.13.198

Cited by

  1. Power density of light curing units through resin inlays fabricated with direct and indirect composites vol.35, pp.5, 2010, https://doi.org/10.5395/JKACD.2010.35.5.353