Production of Bacterial Cellulose by Acetobacter xylinum GS11.

Acetobacter xylinum GS11에 의한 미생물 셀룰로오스의 생산

  • 고정연 (한국과학기술원 생물과학과) ;
  • 신공식 (충북대학교 첨단원예기술개발연구센터) ;
  • 이종수 (배재대학교 유전공학과) ;
  • 최우영 (충남대학교 농화학과)
  • Published : 2002.03.01

Abstract

Productivity of bacterial cellulose by Acetobacter xylinum GS11 was investigated in the several culture conditions. In various carbon sources, others with the exception of glucose were not found to be effective for cellulose production, and 2% was better in yield than other concentration of glucose. Yeast extract and soytone among several organic nitrogens were effective, but inorganic nitrogen sources tested were not efficient for cellulose production by A. xylinum GS11. The effects of various inorganic salts, amino acids and vitamins were also investigated: $MgSO_4$, phenylalanine and $\alpha$-tocopherol gave the cellulose yield of 1.5, 1.4 and 1.4 fold, respectively, compared with basal medium. In our experiment, cellulose production by A. xylinum GS11 added with 10% coconut milk and 0.5% lignosulfonate in basal medium, was the most efficient among the several material sources employed here, and these were 2.2 and 2.1 fold, respectively.

Acetobacter xylinum GS11 균주를 이용하여 다양한 배양조건에서 미생물 셀룰로오스의 생산성을 검토하였다. 탄소원으로 glucose 이외에 첨가한 기질은 영향이 없었으며, 2% glucose 농도 범위에서 셀룰로오스 생산량이 2.8 g/L으로 가장 양호한 것으로 나타났다. 질소원은 Y.E와 soytone등의 유기질소원 첨가가 효과적이었으나, 무기질소원의 효과는 나타나지 않았다. 무기염류 및 아미노산의 첨가는 대부분 효과적이었으며, 이 중 무기염류는$ MgSO_4$가 1.5배, 아미노산은 phenylalanine이 1.4배의 셀룰로오스 생산성을 나타냈다. 비타민은 $\alpha$-tocopherol의 첨가 시 1.4배의 생산성을 보였다. 또한 기본배지에 Coconut milk와 0.5%의 lignosulfonate의 첨가가 대조구와 비교하여 각각 2.2, 2.1배의 셀룰로오스의 생산성을 나타내어 실험 처리 중 가장 효과적이었다.

Keywords

References

  1. Benziman, M., C. H. Haigler, R. M. Brown Jr., A. R. White, and K. M. Cooper. 1980. Cellulose biogenesis; polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc. Natl. Acad Sci. USA 77:6678-6682.
  2. Brown, A. J. 1886. An acetic ferment which forms cellulose. J. Chem. Soc. 49: 432-439.
  3. Dudrnan, W. F. 1959. Cellulose production by Acetobacter acetigenum in definedmedium. J. Microbiol. 21:327-337. https://doi.org/10.1099/00221287-21-2-327
  4. Geyer, U., D. Klemm, and H. P. Schrnauder. 1994, Acta Biotechno!. 14:261.
  5. Hestrin, S. and M. Schramm. 1954. Synthesis of cellulose by Acetobacter xylinum: 1. Micromethod for the determination of cellulose. Biochem. J. 56: 163-166.
  6. Inoba,K., T. Yoshida, T. Mitsunaga, and T. Koshijirna. 1993. Mokuzai Gakkaishi. 39:710.
  7. Ishii, Y, T. Takarna1, M. Goi, and M. Tanaka. 1998. Callus induction and somatic embryogenesis of phalaenopsis. Plant Cell Reports 17:446--450.
  8. Ishikawa, I., M. Matsuoka, T. Tsuchida, and F. Yoshinaga. 1995. Increase in cellulose production by sulfaguanidineresistant mutants derived from sucrofermentans. Biosci. Biotech. Biochem. 59:2259-2262.
  9. Jonas, R. and L. F. Farah. 1998. Production and application of microbial cellulose. Polymer Degradation and Stability 59:101-106.
  10. Ko, J. Y, K. S. Shin, B. D. Yoon, and W. Y Choi. 2000. Isolation and identification of Acetobacter xylinum GS11 producing cellulose. Kor. J. Appl. Microbiol. Biotechnol. 28: 139-146.
  11. Masaoka, S., R. Ohe, and N. Sakota. 1993.Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75:18-22.
  12. Matsuoka, M., T. Tsuchida, K. Matsushita, O. Adachi, and F. Yoshinaga. 1996. A synthetic medium for bacterial cellulose production by Acetobacterxylinum subsp. sucrofermentans. Biosci. Biotech. Biochem. 60:575-579.
  13. Matthysse, A. G. 1983. Role of cellulose fibrils in Agrobacterium tumefaciens infection. J. Bacterio!. 154: 906.
  14. Park, S. H., Y K. Yang, J. W. Hwang, C. S. Lee, and R. Pyun. 1997. Microbial cellulose fermentation by Acetobacter xylinum BRC5.Kor. J. Appl. Microbiol. Biotechnol. 25: 598-605.
  15. Premjet, S, Y Ohtani, and K. Sameshima. 1993. High baeterial cellulose production by Acetobacter xylinum ATCC 10245 in a new culture medium with a sulfite pulping waste fraction. Transaction. 50: 12~128.
  16. Prernjet, S., Y Ohiani,and K. Sameshima. 1994. The contribution of high molecular lignosulfonate to the powerful bacterial cellulose production system with Acetobacter xylinum ATCC 10245. Transaction 50:458-463.
  17. Reuber, T. L. and G. C. Walker. 1993. Biosynthesis of succinoglycan. a symbiotically important polysaccharide of Rhizobium meliloti. Cell 74:269-280.
  18. .Robert, E. C. and M. A. Steven. 1991. Biogenesis of bacterial cellulose. Microbiol. 17:435-447.
  19. Ross, P., R. Mayer and M. Benziman. 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. pp. 35-58.
  20. Ross, P., H. Weinhouse, Y Aloni, D. Michaeli, P. Weinberger- Ohara, R. Mayer, S. Boon, and M. Benziman. 1987. Regulation of cellulose synthesis in Acetobacterxylinum by cyclic diguanylic acid. Nature 325:279-281.
  21. Toda, K. T. Asakura, M. Fukaya, E. Entani, and Y Kawamura. 1997. Cellulose production by acetic acid-resistant Acetobacterxylinum. J. Ferment. Bioeng. 84: 228-231.
  22. Yamanaka, S., K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y Nishi, and M. Uryu. 1989. The structure and mechanical properties of sheets prepared from bacterial eellulose. J. Mat. Sci. 24: 3141-3145.
  23. Yoshinaga, F. 1996. Development of production processand application of biocellulose, a new material. Bioscience and Industry 54:22-25.