Characteristics of Ammonia Removal in Biofilters Inoculated with Earthworm Cast.

분변토를 접종한 바이오필터의 암모니아 제거 특성

  • 류희욱 (숭실대학교 환경ㆍ화학공학과, 바이오세인트(주) 환경생명공학연구소) ;
  • 한희동 (숭실대학교 환경ㆍ화학공학과) ;
  • 조경숙 (이화여자대학교 국가지정 지하환경연구실)
  • Published : 2002.03.01

Abstract

Four inorganic packing materials (zeocarbon, porous celite, porous glass, zeolite) and a earthworm cast were compared with regard to the removal of ammonia in a biofilter inoculated with earthworm cast. Physical adsorption of ammonia on packing materials were negligible except zeocarbon (23.5 g-$NH_3$/kg), and cell immobilization capacity have similar values irrespective of packing materials. Pressure drops of the packed bed were in order of earthworm cast zeocarbon zeolite porous glass porous. The maximum elimination capacity ($g-Nkg^{-1}$ $d^{-1}$ ) of ammonia, which were based on a unit volume of packing material, were in order of zeocarbon (526) earthworm cast (220) porous celite (93) > zeolite (68) > porous glass (53). By using kinetic analysis, the maximum removal rates ($V_{m}$ ) and the saturation constant ($K_{s}$ ) for ammonia were determined, and zeocarbon showed superior performance among the five materials.

4 종류의 무기담채와 지렁이 분변토를 담채로 사용하여 분변토 집식배양한 질산화 세균을 접종한 바이오필터의 암모니아 제거 특성을 규명하였다. 담채의 암모니아 흡착능은 zcocarbn(24g-NH3/kg)을 제외하고 무시할 수준이었으며, 충전부피 당 담체의 미생물 고정화량은 담채 종류와 관계없이 유사하였다. 바이오필터의 압력손실은 분변토 $\geq$ zeocarbon $\geq$ zeolite $\geq$ porous glass $\simeqporous $ 순이었다. 담체의 충전 부피를 기준으로 한 최대 제거용량($g-Nkg^{-1}$$d^{-1}$)은 zeocarbon (526) $\geq$ 분변토 (220) $\geq$ porous celite (93) > Zeolite (68) > porous glass (53) 순으로 바이오필터의 성능은 담체에 많은 영향을 받는 것을 확인할 수 있었다. 속도론적 해석에 의해 $V_{m}$$K_{s}$를 구하였으며, 담체들간의 암모니아 제거 성능을 고려할 때 가장 우수한 담체는 zeocarbon 이었다.

Keywords

References

  1. Ryer-Power, J. E. 1991. Health effects of ammonia. Plant/ Oper. Prog., 10 : 228-232. https://doi.org/10.1002/prsb.720100411
  2. Dunne, G. P. V, B. F. McNamara, and C. M. McGinley. 1992. Bench-scale removal of odor and volatile organic compounds at a composting facility. Water Environ. Res. 64: 19-27.
  3. Barth, C. L., F. L. Elliott, and S. W. Melvin. 1984. Using odor control technology to support animal agriculture. Trans. ASAE. 27: 859-864.
  4. Mannebeck, H., 1986,Covering manure storing tanks to control odor. In V. C. Neilser, J. H. Voorburg, and P. L. Hermite (eds.), Odor prevention and control of organic sludge and livestock farming. Elsevier Applied Science Publishers, London, pp. 188-192.
  5. Kim, N. J., M. Hirai,and M. Shoda. 2000a. Removal characteristics of high load ammonia gas by a biofilter seeded with a marine bacterium, Vibrio alginolyticus. Biotech. Letters 22: 1295-1299.
  6. HiraiM.,M.Mamamoto, M. Yani, andM. Shoda. 2001(b). Comparison of the biological $NH_3$ removal chracteristics among four inorganic packing materials. J. Biosci. Bioeng. 91: 428-430.
  7. Yani, M., M. Hirai,and M. Shoda. 1998. Removal kinetics of ammonia by the biofilter seeded with night soil sludge. J. Ferment, Bioeng. 85: 502506.
  8. Hartikalnen, T, J. Ruuskanen, M. Vanhatalo, and P. J. Martikainen. 1996. Removal of ammoniafrom air by a peat biofilter. Environ. Techno!. 17: 45-53. https://doi.org/10.1080/09593331708616359
  9. Marin, G., M. Lemaste, and S. Taha. 1996. The control of gaseous nitrogen pollutant removal in a fixed peat bed reactor. J. Biotechnol. 46: 15-21. https://doi.org/10.1016/0168-1656(95)00167-0
  10. Tiwaree, R. S., K. S. Cho, M. Hirai, and M. Shoda. 1992. Biological deodorization of dimethyl sulfide using different fabrics as the carriers of microorganisms. Appl. Biochem. Biotechnol. 32: 135-148.
  11. Wani, A. H., R. M. R. Branion, and A. K. Lau. 1997. Biofiltration: a promising and cost-effective control technology for odors, VOCs and air toxics. J. Environ. Sci. Health A32: 2027-2055.
  12. .Devinny, J. S., M. A. Deshusses, and T S. Webster. 1999. Biofiltration for air pollution control, pp. 46. Lewis Publishers, NewYork.
  13. Cho, K. S., L. Zhang, M. Hirai, and M. Shoda. 1991. Removal characteristics of hydrogen sulfide and methanethiol by Thiobacillus sp. isolated from peat in biological deodorization. J. Ferment, Bioeng. 71: 44-49. https://doi.org/10.1016/0922-338X(91)90302-W
  14. Cho, K. S., M. Hirai,and M. Shoda. 1991. Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus thioparus DW44 isolated from peat biofilter. J. Ferment, Bioeng. 71: 384-389.
  15. Cho, K. S., M. Hirai, and M. Shoda. 1992. Degradation of hydrogen sulfide by Xanthomonas sp. strain isolated from peat. Appl. Environ. Microbiol. 58: 1183-1189.
  16. Tanji, Y, T Kanagawa, and E. Mikami. 1989. Removal of dimethyl sulfide, methyl mercaptan, and hydrogen sulfideby immobilized Thiobacillus thioparns TK-m. J.Fennent. Bioeng. 68: 280-285.
  17. Smer, E., C. Chasaya, H. Van Langenhove, and W. Verstraete. 1996. The effect of inoculation and the type of carrier material used on the biofilter of methyl sulfides. Appl. MicrobioL BiotechnoL 45: 293-298.
  18. Cho, K. S., H. W. Ryu, and N. Y Lee. 2000. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. J. Biosci. Bioeng. 90: 25-31.
  19. Smer, E., C. Chasaya, H. van Langenhove, and W. Verstraete. 1996. The effect of inoculation and the type of carrier material used on the biofilter of methyl sulfides. Appl. Microbiol. Biotechnol. 45: 293-298.
  20. Kim, N. -J., M. Mitsuyo, and M. Shoda. 2000. Comparison of organic and inorganic packing materials in the removal of ammoniagas in biofilters. J. Hazard. Mater. B72: 77-90.
  21. Hirai M., M. Mamamoto, M. Yani, and M. Shoda. 2001(a). Comparison of the biological $H_2S$ removal chracteristics among four inorganic packing materials. J. Biosci. Bioeng. 91: 396-402.
  22. Chung,Y. C. and C. P. Tseng. 1997. Biotreatment of ammonia from air by an immobilized Arthrobacter oxydans CH8 biofilter. Biotechnol. Prog. 13: 794-798.