In Vitro Antioxidant Activity of Some Selected Prunus Species in Korea

  • Jung, Hyun-Ah (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Kim, Ae-Ra (College of Pharmacy, Pusan National University) ;
  • Chung, Hae-Young (College of Pharmacy, Pusan National University) ;
  • Choi, Jae-Sue (Faculty of Food Science and Biotechnology, Pukyong National University)
  • Published : 2002.12.01

Abstract

In the course of the investigations of natural antioxidants, we examined the antioxidant activities of the methanol (MeOH) extracts of some selected Prunus species, including P. buergeriana, P. davidiana, P padus, P. pendula for. ascendens, P. sargentii, P. serrulata var. spontanea and P. yedoensis by three methods as represented by the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical, total ROS (reactive oxygen species) and the peroxynitrite ($ONOO^-$) scavenging activity tests. We also evaluated the activities of the organic solvent-soluble fractions, including the dichloromethane ($CH_2Cl_2$), ethyl acetate (EtOAc), n-butanol (n-BuOH) fractions and the water ($H_2O$) layer of P. serrulata var. spontanea leaves. By means of bioassay-directed fractionation, we isolated eleven known flavonoids (1-11) from the EtOAc soluble fraction of the MeOH extract of the Prunus serrulata var. spontanea leaves, exhibiting strong antioxidant activity and characterized as prunetin (1), genistein (2), quercetin (3), prunetin $4'-O-{\beta}-glucopyranoside$ (4), kaempferol $3-O-{\alpha}-arabinofuranoside$ (5), prunetin $5-O-{\beta}-glucopyranoside$ (6), kaempferol $3-O-{\beta}-xylopyranoside$ (7), genistin (8), kaempferol $3-O-{\beta}-glucopyranoside$ (9), quercetin $3-O-{\beta}-glucopyranoside$ (10) and kaempferol $3-O-{\beta}-xylopyranosyl-(1{\rightarrow}2)-{\beta}-glucopyranoside$ (11). Compounds 3 and 10 showed good activities in all tested model systems. Compounds 2 and 8 showed scavenging activities in the DPPH and $ONOO^-$ tests, while compounds 5, 7, 9 and 11 were active in the $ONOO^-$ and ROS tests. On the other hand, compounds 1, 4 and 6 did not show any activities in the tested model systems.

Keywords

References

  1. Agrawal, P. K., NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochem., 31, 3307-3330 (1992) https://doi.org/10.1016/0031-9422(92)83678-R
  2. Ames, B. N., Shigenaga, M. K., and Hage, T. M., Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 90, 7915-7922 (1993) https://doi.org/10.1073/pnas.90.17.7915
  3. Aruoma, O. I., Assessment of potential prooxidant and antioxidant actions, J. Am. Oil Chem. Soc., 73(12), 1617-1625 (1996) https://doi.org/10.1007/BF02517962
  4. Balavoine G. G. and Genleti, Y. V., Peroxynitrite scavenging by different antioxidants, Part I: convenient assay. Nitric Oxide, 3, 40-54 (1999) https://doi.org/10.1006/niox.1999.0206
  5. Beckman, J. S., Beckman, T. W., Chen, J., Marshell, P. A., and Freeman, B. A., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci., USA, 87, 1620-1624 (1990) https://doi.org/10.1073/pnas.87.4.1620
  6. Beninger, C. W., Hosfield, G. L. and Nair, M. G., Flavonol glycosides from the seed coat of a new manteca-type dry bean (Phaseolus vulgaris L.). J. Agric. Food Chem., 46, 2906-2910 (1998) https://doi.org/10.1021/jf9801522
  7. Blois, M. S., Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1202 (1958) https://doi.org/10.1038/1811199a0
  8. Branen, A. L., Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc., 52, 59-63 (1975) https://doi.org/10.1007/BF02901825
  9. Choi, H. R., Choi, J. S., Han, Y. N., Bae, S. J., and Chung, H. Y., Peroxynitrite scavenging activity of herb extracts. Phytother. Res., 16, 364-367 (2002) https://doi.org/10.1002/ptr.904
  10. De Almeida, A. P., Miranda, M. M. F. S., Simoni, I. C., Wigg, M. D., Lagrota, M. H. C., and Costa, S. S., Flavonol monoglycosides isolated from the antiviral fractions of Persea Americana (Lauraceae) leaf infusion. Phytother. Res., 12, 562-567 (1998) https://doi.org/10.1002/(SICI)1099-1573(199812)12:8<562::AID-PTR356>3.0.CO;2-6
  11. Donovan, J. L., Meyer, A. S., and Waterhouse, A. L., Phenolic composition and antioxidant activity of prunes and prunes juice (Prunus domestica). J. Agric. Food Chem., 46, 1247-1252 (1998) https://doi.org/10.1021/jf970831x
  12. Dreher, D. and Junod, F., Role of oxygen free radicals in cancer development. Eur. J. Cancer, 32A(1), 30-38 (1996)
  13. Farkas, L., Nogradi, M., Antus, S., and Gottsegen, A, About the existence of padmakastein and padmakastin. Tetrahedron, 25, 1013-1019 (1969) https://doi.org/10.1016/S0040-4020(01)82674-0
  14. Geibel, M. and Feucht, W., Flavonoid 5-glucosides from Prunus cerasus bark and their characteristic weak glucosidic bonding. Phytochem., 30, 1519-1521 (1991) https://doi.org/10.1016/0031-9422(91)84200-C
  15. Geibel, M., Geiger, H., and Treuter, D., Tectochrysn 5- and genistein 5-glucosides from the bark of Prunus ceresus. Phytochem., 29, 1351-1353 (1990) https://doi.org/10.1016/0031-9422(90)85467-T
  16. Griffiths, H. R. and Lunec, J., The C1q binding activity of IgG is modified in vitro by reactive oxygen species: implications for rhematinoid arthritis. FEBS Lett., 388, 161-164 (1996) https://doi.org/10.1016/0014-5793(96)00542-X
  17. Jung, H. A., Park, J. C., Chung, H. Y., Kim, J., and Choi, J. S., Antioxidant flavonoids and chiorogenic acid from the leaves of Eriobotrya japonica. Arch. Pharmacol. Res., 22, 213-218, (1999) https://doi.org/10.1007/BF02976549
  18. Kayano, S.-I., Kikuzaki, H., Fukutsuka, N., Mitani, T, and Nakatani, N., Antioxidant activity of prune (Prunus domestice L.) constituents and a new synergist. J. Agric. Food Chem., ASAP., Accepted April 10 (2002)
  19. Khalid, S. A, Gellert, M., Szendrei, K., and Duddeck, H., Prunetin 5-O- $\beta$-D-glucopyranoside, an isoflavone from the peduncle of Prunus avium and P. cerasus. Phytochem., 28(5), 1560-1561 (1989) https://doi.org/10.1016/S0031-9422(00)97795-1
  20. Kim, H. J., Woo, E. R., and Park, H. K., A novel liqnan and flavonoids from Polygonum aviculare. J. Nat. Prod., 57, 581-586 (1994) https://doi.org/10.1021/np50107a003
  21. Kim, J. G., Illustrated Natural Drugs Encyclopedia (color edition), Namsandang, Korea, Vol. I, pp. 437, (1997)
  22. Kim, T. J., In Korean Resources Plants, Seoul National University Publisher, Seoul, Korea, Vol. II, pp. 171, (1996)
  23. Kooy, N. W., Royall, J. A., Ischiropoulos, H., and Beckman, J. S., Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med., 16, 149-156 (1994) https://doi.org/10.1016/0891-5849(94)90138-4
  24. Kritikar, K. R. and Basu, B. D., In Indian Medicinal Plants, MIS Periodical Experts, New Delhi, Vol. II, pp. 951, (1974)
  25. Label, C. P. and Bondy, S. C., Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem. lnt., 17, 435-441 (1990) https://doi.org/10.1016/0197-0186(90)90025-O
  26. Morel, I., Lescoat, G., Cognel, P., Sergent, O., Pasdelop, N., Brissot, P., Cillard, P. and Cillard, J., Antioxidant and ironchelating activities of the flavonoids catechins, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem. Pharmacol., 45, 13-19 (1993) https://doi.org/10.1016/0006-2952(93)90371-3
  27. Nakatani, N., Kayano, S.-I., Kikuzaki, H., Sumino, K., Katagiri, K., and Mitani, T., Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). J. Agric. Food Chem., 48, 5512-5516 (2000) https://doi.org/10.1021/jf000422s
  28. Oshima, H., Yoshie, Y., Auriol, S., and Gillbert, I., Antioxidant and pro-oxidant actions of flavonoids: Effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic. Biol. Med., 25, 1057-1065 (1998) https://doi.org/10.1016/S0891-5849(98)00141-5
  29. Park, H. J., Young, H. S., Park, K. Y., Rhee, S. H., Chung, H. Y., and Choi, J. S., Flavonoids from the whole plants of Orostacnys jeponicus. Arch. Pharm. Res, 14, 167-171 (1991) https://doi.org/10.1007/BF02892023
  30. Pincemail, J. J., Free radicals and antioxidants in human diseases. In Favier, A. E., Cadet, J., Kalyanaraman, B., Fonteoave, M., Pierre, J. L., Analysis of Free radicals in Biological Systems. Birkhauser Verlag, Berlin, pp.83-98, (1995)
  31. Rice-Evans, C. A., Miller, N., and Paganga, G., Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  32. Sagar, S., Kallo, I. J., Kaul, N., Ganguly, N. K. and Sharma, B. K., Oxygen free radicals in essential hypertension. Mol. Cell Biocbem., 111, 103-108 (1992)
  33. Salah, N., Miller, N. J., Paganga, G., Tijburg, L., Bolwell, G. P. and Rice-Evans, C. A., Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys., 322, 339-346 (1995) https://doi.org/10.1006/abbi.1995.1473
  34. Sang, S., Lapsley, K., Jeong, W-S., Lachance, P. A Ho, C.-T., and Rosen, R. T., Antioxidative phenolic compounds isolated from almond skins(Prunus mygdalus Batsch). J. Agric. Food Chem., 50, 2459-2463 (2002) https://doi.org/10.1021/jf011533+
  35. Sawa, T., Akaike, T., and Maeda, H., Tyrosine nitration by peroxynitrite formed nitric oxide and superoxide generated by xanthine oxidase. J. Biol. Chem., 275(42), 32467-32474 (2000) https://doi.org/10.1074/jbc.M910169199
  36. Singh, A., Chemical and biochemical aspects of activated oxygen: singlet oxygen, superoxide anion, and related species, In Miquel, J., Quintanilha, A. T., and Weber, H. (Eds.). CRC Handbook of free radicals and antioxidants in Biomedicine. CRC Press, Inc., Boca Raton, Florida, Vol. 1, pp. 17-28, (1989)
  37. Sohal, R. S., Role of oxidative stress and protein oxidation in the aging process. Free Radic. Biol. Med., 33(1), 37-44 (2002) https://doi.org/10.1016/S0891-5849(02)00856-0
  38. Squadrito, G. L. and Pryor, W. A., Oxidative chemistry of nitric oxide: the role of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med., 25, 392-403 (1998) https://doi.org/10.1016/S0891-5849(98)00095-1
  39. Talukadar, A. C., Jain, N., De, S., Krishnamurty, H. G., An isoflavone from Myristica malabarica, Phytochem., 53, 155-157 (2000) https://doi.org/10.1016/S0031-9422(99)00489-6
  40. Wang, H., Nair, M. G., Strasburg, G. M., Booren, A. M., and Gray, J. I., Antioxidant polyphenols from tart cherries (Prunus cerasus). J. Agric. Food Chem., 47, 840-844 (1999a) https://doi.org/10.1021/jf980936f
  41. Wang, H., Nair, M. G., Strasburg, G. M., Booren, A. M. and Gray, J. I., Novel antioxidant compounds from tart cherries (Prunus cerasus). J. Nat. Prod., 62, 86-88 (1999b) https://doi.org/10.1021/np980268s
  42. Young, H. S., Park, J. C., Park, H. J., Lee, J. H., and Choi, J. S., Phenolic compounds of the leaves of Eucommia ulmoides. Arch. Pharm. Res., 14(2), 114-117 (1991) https://doi.org/10.1007/BF02892014