DOI QR코드

DOI QR Code

Strength Properties of High-Strength Concrete Exposed at High Temperature

고온을 받은 고강도 콘크리트의 강도특성

  • Published : 2002.10.01

Abstract

A review is presented of experimental studies on the strength performance of concrete exposed at short-term and rapid heating as in a fire and after cooling. Emphasis is placed on concretes with high original compressive strengths, that is, high-strength concrete(HSC). The compressive strength-temperature relationships from the reviewed test programs are distinguished by the test methods used in obtaining the data(unstressed, unstressed residual strength, and stressed tests) and by the aggregate types(normal or lightweight), The compressive strength properties of HSC vary differently with temperature than those of NSC. HSC have higher rates of strength loss than lower strength concrete in the temperature range of between 20$^{\circ}C$ to about 400$^{\circ}C$. These difference become less significant at temperatures above 400$^{\circ}C$ compressive strengths of HSC at 800$^{\circ}C$ decrease to about 30 % of the original room temperature strength. A comparison of lest results with current code provisions on the effects of elevated temperatures on concrete compressive strength and elastic modulus shows that the CEN Eurocodes and the CEB provisions are unconservative.

본 연구에서는 건축물에 발생된 화재와 같이 단기간에 빠르게 가열되는 조건하에 고강도 콘크리트의 압축강도특성을 구명하기 위하여 기존의 내화실험결과를 수집 및 분석하며 아울러 현행 노출온도에 따른 압축강도의 상관관계 기준식의 고강도 콘크리트에 적용 가능성을 검토하고자 한다. 노출온도에 따른 고강도 콘크리트의 압축강도 변화 특성은 내화실험방법(재하, 비재하 및 비재하 잔여 강도실험) 및 골재종류(천연 및 경량골재)에 따라 다르게 나타나므로 실험방법 및 골재종류별로 나누어 비교 및 분석하였다. 고강도 콘크리트의 압축강도 특성은 보통강도와는 노출온도에 따라 다르게 나타났으며 노출온도 약 2$0^{\circ}C$에서 40$0^{\circ}C$범위에서 보통강도 콘크리트보다 급격하게 압축강토가 저하되었으며 40$0^{\circ}C$ 이상에서는 큰 차이를 보이지 않았다. 80$0^{\circ}C$에서 고강도 콘크리트의 압축강도는 상온 압축강도의 30%까지 감소되었다. 노출온도에 따른 압축강도 및 탄성계수 변화에 대한 실험결과와 유럽 기준을 비교하여 볼 때 현행 기준식은 안전측이지 못하므로 화재에 노출된 고강도 콘크리트의 압축강토 및 탄성계수 평가에 적응 가능성이 결여된 것으로 평가되었다.

Keywords

References

  1. Phan, L. T., "Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art," Building and Fire Research Laboratory, NISTIR 5934. 1996.
  2. 한국콘크리트학회, "화재와 콘크리트," 한국콘크리트학회지, 2002, pp.9-45.
  3. Menzel,C.A., "Tests of the Fire Resistance and Thermal Properties of Solid Concrete Slabs and Their Significance," Proceedings, ASTM Vol.43, 1943, pp. 1099-1153.
  4. Comites Euro-International Du Beton, "Fire Design of Concrete Structures - in accordance with CEB/FIP Model Code 90 (Final Draft)," CEB Bulletin D' Information, No. 208, July 1991, Lausanne, Switzerland.
  5. Castillo, C. and Durrani, A J., "Effect of Transient High Temperature on High- trength Concrete," ACI Material Journal, Vol. 87, No. 1, 1990, pp.47-53.
  6. Hertz K. "Danish Investigations on silica Fume Concretes at Elevated Temperatures," Proceedings, ACI 1991 Spring Convention, Boston, MA, March pp.17 -21.
  7. Diederichs, U., Jumppanen, U. M., Penttala, V., "Material Properties of High Strength Concrete at Elevated Temperatures," IABSE 13th Congress, Helsinki, 1988.
  8. Hammer, T. A, "High Strength Concrete Phase 3, Compressive Strength and Elastic Modulus at Elevated Temperatures," SP6 Fire Resistance, Report 6.1, SINTEF Structure and Concrete, STF70 A95023, 1995.
  9. Sullivan, P. J. E. and Sharshar, R., "Performance of Concrete at Elevated Temperatures(as measured by the reduction in compressive strength)," Fire Technology, Vol. 28. No. 3, 1992, pp.351-359. https://doi.org/10.1007/BF01857693
  10. Morita, T., Saito, H., and KU,agai, H., "Residual Mechanical Properties of High Strength Concrete Members Exposed to High Temperature - Part 1. Test on Material Properties," Summaries of Technical Papers of Annual Meeting, AlJ, Niigata.1992.
  11. Furumura, F., Abe, T., Shinohara, Y., "Mechanical Properties of High Strength Concrete at High Temperatures," Proceedings of the Fourth Weimar Workshop on High Performance Concrete: Material Properties and Design, held at Hochschule fur Architektur und Bauwesen(HAB), Weimar, Germany, October 4-5, 1995, pp.237 -254.
  12. Felicetti, R., Gambarova, P. G., Rosati, G. P., Corsi, F., Giannuzzi, G., "Residual Mechanical Properties of High-Strength Concretes Subjected to High-Temperature Cycles," Proceedings, 4th International Symposium on Utilization of High- Strength High-Performance Concrete, Paris, France, 1996, pp.579 -588.
  13. Noumowe, A. N., Clastres, P., Debicki, G. and Costaz, J. L., "Thermal Stresses and Water Vapor Pressure of High Performance Concrete at High Temperature," Proceedings, 4th International Symposium on Utilization of High-Strength/High- Performance Concrete, Paris, France, 1996.
  14. Comite Europeen de Normalisation, "prENV1992-1-2: Eurocode 2: Design of Concrete Structures. Part 1-2 : Structural Fire Design," CEN/TC 250/SC 2, 1993.
  15. ACI, "Guide for Determining the Fire Endurance of Concrete Element," ACI 216R-89. 1989.
  16. Concrete Reinforcing Steel Institute, " Reinforcing Concrete Fire Resistance," CRSI, 1980.

Cited by

  1. A Study on Properties of Concrete Made of Natural and Crushed Sand in High Temperatures vol.24, pp.1, 2012, https://doi.org/10.4334/JKCI.2012.24.1.053
  2. Compressive Properties of Ultra High Strength Concrete Exposed to High Temperature vol.26, pp.3, 2014, https://doi.org/10.4334/JKCI.2014.26.3.377