DOI QR코드

DOI QR Code

A Numerical Study on Acoustic Behavior in Combustion Chamber with Acoustic Cavity

음향공이 장착된 로켓엔진 연소실의 음향장 해석

  • Published : 2002.06.01

Abstract

Acoustic behavior in combustion chamber with acoustoc cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability passively. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Through harmonic analysis, acoustic pressure responses of chamber to acoustic oscillating excitation are shown and the resonant acoustic modes are identified. Acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded significantly. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

음향불안정을 억제하는 수동제어기구중 하나인 음향공의 음향학적 효과를 파악하기 위해, 음향공이 장착된 로켓엔진 연소실의 음향장 특성을 수치해석적으로 조사하였다. 음향공 모델로서 Helmholtz 형태의 공명기가 채택되었고, 조화해석을 통해 주로 음향공에 의해 야기되는 음향학적 효과를 관찰하였다. 음향공의 음속을 조정하여 동조주파수를 변화시켜가면서 가진음원에 대한 연소실의 음향진동 응답을 구하고, 제1접선방향 음향모드의 감쇠인자를 구하였다. 동조주파수가 제1접선방향 음향모드의 공진주파수에 접근함에 따라 모드분할 현상이 나타났고, 이로인해 음향공을 본래의 제1접선방향 음향모드에 동조시키더라도 음향감쇠효과가 저하됨을 알았다. 모드분할 현상과 분할된 각 모드의 감쇠인자 및 음향 에너지 분포를 고려하였으며, 이를 토대로 효과적인 감쇠를 위해서는, 억제하고자 하는 음향모드로부터 모드분할 현상이 나타나지 않으면서 그 음향모드의 감쇠효과를 극대화하도록 음향공을 동조시키는 것이 바람직함을 알 수 있었다.

Keywords

References

  1. Huzel, D. K. and Huang, D. H., Modern Engineering for Design of Liquid-Propellant Rocket Engines, Vol. 147, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 1992.
  2. Harrje, D. J. and Reardon, F. H. (eds.),Liquid Propellant Rocket Instability, NASASP-194, 1972.
  3. Sutton, G. P., Rocket Propulsion Elements,6th ed., John Wiley & Sons, Inc., New York,1992.
  4. Liquid Rocket Engine Injectors, NASA SP-8089, 1976.
  5. Liquid Rocket Engine Combustion Stabilization Devices, NASA SP-8113, 1974.
  6. 윤명원, 윤재건, “액체 로켓 추진 기관의 연소불안정 현상”, 한국항공우주학회지, 제25권, 제5호, 1997, pp. 183-189.
  7. Oberg, C. L., “Combustion Stabilization with Acoustic Cavities," Journal of Spacecraft and Rockets, Vol. 8, No. 12, 1971, pp. 1220-1225. https://doi.org/10.2514/3.30366
  8. Yang, V. and Anderson, W. E. (eds.), Liquid Rocket Engine Combustion Instability, Vol. 169, Progress in Astronautics and Aeronautics, AIAA, Washington, DC, 1995, pp. 377-399.
  9. Pressure Fed Thrust Chamber Technology Program, NASA-CR-190666, 1992.
  10. Zucrow, M. J. and Hoffman, J. D, Gas Dynamics, Vol. II, John Wiley & Sons, Inc.,New York, 1977.
  11. Jin, Z., Yuhui, H., and Zhenguo, W., "The Characteristics of Acoustic Waves and Acoustic Cavities to Combustion Instability," AIAA Paper 99-2916, June 1999.
  12. Zhuang, F., Nie, W., and Zou, Q.,"Numerical Simulation of MMH/NTO Rocket Engine Combustion Instability," AIAA Paper 99-2779, June 1999.
  13. Acker, T. L. and Mitchell, C. E., "Combustion zone-Acoustic Cavity Interactions in Rocket Combustors," Journal of Propulsion and Power, Vol. 10, No.2, 1994, pp. 235-243. https://doi.org/10.2514/3.23734
  14. Chapra, S. C. and Canale, R. P., Numerical Methods for Engineers, 2nd ed.,McGraw-Hill, Singapore, 1989.
  15. ANSYS User's Manual for revision 5.0, Volume IV, Theory, Swanson Analysis Systems, Inc., Houston, PA, 1993.
  16. ANSYS User’s Manual for revision 5.0, Volume I, Procedures, Swanson Analysis Systems, Inc., Houston, PA, 1992.
  17. 고영성, 이광진, 강동혁, 김형모, 한국항공우주연구원 Test Note 추성-01-13, 2001.

Cited by

  1. Acoustic tuning of gas–liquid scheme injectors for acoustic damping in a combustion chamber of a liquid rocket engine vol.304, pp.3-5, 2007, https://doi.org/10.1016/j.jsv.2007.03.036
  2. Application of Combustion Stabilization Devices to Liquid Rocket Engine vol.31, pp.6, 2003, https://doi.org/10.5139/JKSAS.2003.31.6.079
  3. Geometric Effects on Damping Characteristics of Acoustic Cavity for the Control of Combustion Instabilities vol.34, pp.6, 2006, https://doi.org/10.5139/JKSAS.2006.34.6.059
  4. A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators vol.15, pp.8, 2011, https://doi.org/10.1016/j.ast.2010.12.004
  5. Numerical analysis of acoustic characteristics in gas turbine combustor with spatial non-homogeneity vol.18, pp.8, 2004, https://doi.org/10.1007/BF02984259