Leaching and mobility prediction of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils

Butachlor, ethoprophos, iprobenfos, isoprothiolane 및 procymidone의 토양 중 용탈과 이동성 예측

  • Kim, Chan-Sub (National Institute of Agriculture Science and Technology) ;
  • Park, Kyung-Hun (National Institute of Agriculture Science and Technology) ;
  • Kim, Jin-Bae (National Institute of Agriculture Science and Technology) ;
  • Choi, Ju-Hyeon (National Institute of Agriculture Science and Technology)
  • 김찬섭 (농업과학기술원 작물보호부 농약안전성과) ;
  • 박경훈 (농업과학기술원 작물보호부 농약안전성과) ;
  • 김진배 (농업과학기술원 작물보호부 농약안전성과) ;
  • 최주현 (농업과학기술원 작물보호부 농약안전성과)
  • Published : 2002.12.27

Abstract

This study was conducted to investigate the downward mobility of pesticides using soil colunms and to compare the experimental results with predicted values from Convective mobility test model. Five pesticides including ethoprophos, procymidone, iprobenfos, isoprothiolane, and butachlor were subjected to soil column leaching test for three types of cultivation soils. The concentrations of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor leached from soil column of 30 cm depth ranged $0.74{\sim}3.61mg/mL,\;0.36{\sim}1.67mg/L,\;0.16{\sim}0.84mg/L,\;0.16{\sim}0.67mg/L$ and lower than 0.15 mg/L, respectively. Elution volume to reach the peak of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor in the leachate ranged $2{\sim}4PV,\;3{\sim}10PV,\;5{\sim}13PV,\;4{\sim}14PV\;and\;19{\sim}61PV$, respectively. Convection times predicted by Convective mobility test model at standard conditions were $9{\sim}18$ days for ethoprophos, $17{\sim}35$ days for iprobenfos, $24{\sim}54$ days for isoprothiolane, $21{\sim}65$ days for procymidone and $105{\sim}279$ days for butachlor. Based on these convection times, ethoprophos was classified as mobile or most mobile, isoprothiolane and procymidone as moderately mobile or mobile and butachlor as slightly mobile. On the same conditions, convection times from the model were coincided with those from soil column test in most of the soil-pesticide combinations applied. Therefore, Convective mobility test model could be applied to predict convection times of pesticides.

토주용탈실험으로 농약별 이동 양상을 파악하고, 흡착계수와 토양관련 매개변수를 이용하여 대류 이동성 모형(Convective mobility test model)으로 예측한 용탈 속도와 비교 평가하였다. 토양살충제 ethoprophos, 원예용 살균제 procymidone, 도열병약 iprobenfos와 isoprothiolane 및 수도용 제초제 butachlor를 대상농약으로 선정하고 토지이용 형태를 기준으로 논, 밭 및 산림토양으로 구분한 3종의 토양에 대하여 토주용탈실험을 수행하였다. 각 농약을 $50{\mu}g/cm^2$ 수준으로 토주 상단에 처리하였을 때 토심 30 cm 이동 후 용탈되는 농약별 peak 농도는 ethoprophos $0.74{\sim}3.61mg/mL$, iprobenfos $0.35{\sim}1.67mg/L$, procymidone $0.16{\sim}0.84mg/L$, isoprothiolane $0.16{\sim}0.67mg/L$, butachlor 0.15 mg/L이하 수준이었고, peak 농도 출현까지 소요된 용탈수량은 ethoprophos $2{\sim}4$ pore volume (PV), iprobenfos $3{\sim}10PV$, procymidone $5{\sim}13PV$, isoprothiolane $4{\sim}14PV$, butachlor $19{\sim}61PV$ 수준이었다. 대류 이동성 모형에 의한 예측 결과, 이동소요시간은 표준조건에서 ethoprophos $9{\sim}18$일, iprobenfos $17{\sim}35$일, isoprothiolane $24{\sim}54$일, procymidone $21{\sim}65$일 및 butachlor $105{\sim}279$일로 나타나 대류 이동성 모형 분류에 따르면 ethoprophos는 mobile${\sim}$most mobile, iprobenfos, isoprothiolane 및 procymidone은 moderately mobile${\sim}$mobile 그리고 butachlor는 slightly mobile 등급에 속하는 것으로 나타났다. 토주용탈실험과 동일한 조건으로 대류 이동성 모형에 의하여 이동소요시간을 예측한 결과는 대부분의 토양-농약 조합에서 잘 일치하여 이동소요시간의 예측에 대류 이동성 모형을 이용하는 것이 가능할 것으로 생각된다.

Keywords

References

  1. Barry, D. A., and G. Sposito (1988) Application of the convection-dispersion model to solute transport in finite soil columns. Soil Sci. Soc. Am. J. 52:3-9
  2. Beck, A. J., H. Stolting, G. L. Harris, K. R. Howse, and K. C. Jones (1996)Leaching of recently applied and aged residues of the herbicides atrazine and isoproturon through a large, structured clay soil core. Chemosphere 33:1297-1305
  3. Bergstroem, L. (1996) Model predictions and field measurements of chlorsulfuron leaching under non-steady-state flow conditions. Pestic. Sci. 48:37-45
  4. Boesten, J. J. T. I., and A. M. A. van der Linden (1991) Modeling the influence of sorption and transformation on pesticide leaching and persistence. J. Environ. Qual. 20:425-435
  5. Bottani, P., J. Keizer, and E. Funari (1996) Leaching indices of some major triazine metabolites. Chemosphere 32:1401-1411 https://doi.org/10.1016/0045-6535(96)00049-5
  6. Jury, W. A., W. F. Spencer, and W. J. Farmer (1983) Behavior assessment model for trace organics in soil: I. Model description. J. Environ. Qual. 12:558-564
  7. Jury, W. A., W. J. Farmer, and W. F. Spencer (1984a) Behavior assessment model for trace organics in soil: II. Chemical classification and parameter sensitivity. J. Environ. Qual. 13:567-572
  8. Jury, W. A., W. F.Spencer, and W. J. Farmer (1984b) Behavior assessment model for trace organics in soil: III. Application of screening model. J. Environ. Qual. 13:573-579
  9. Jury, W. A., W. F.Spencer, and W. J. Farmer (1984c) Behavior assessment model fort race organics in soil: IV. Review of experimental evidence. J. Environ Qual. 13:580-586
  10. Jury, W. A., D. D. Focht, and W. J. Farmer (1987) Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. J. Environ. Qual. 16:422-428
  11. Klute, A. (1986) Method of soil analysis. Part 1 - Physical and mineralogical methods. 2nd ed. American Society of America and Soil Science Society of America. Madison, Wisconsin
  12. Koerdel, W., M. Herrchen, and W. Klein (1991) Experimental assessment of pesticide leaching using undisturbed lysimeters. Pestic. Sci. 31:337-348
  13. Page, A. L. (1982) Method of soil analysis. 2nd ed. American Society of America and Soil Science Society of America. Madison, Wisconsin
  14. Roth, K., and W. A. Jury (1993) Modeling the transport of solutes to groundwater using transfer functions. J. Environ. Qual. 22:487-493
  15. Sanchez-Martin, M. J., T. Crisanto, L. F. Lorenzo , M. Atienza, and M. Sanchez-Camazano (1995) Influence of leaching rates on $^{14}C$-metolachor mobility. Bull. Environ. Contam Toxicol. 54:562-569
  16. Tomlin, C.(ed.) (1997) The pesticide manual (11th ed.) British Crop Protection Council. UK
  17. 강종국 (1996) 토양중 살충제 endosulfan의 흡탈착 특성에 관한 연구. 전남대학교 박사학위논문
  18. 김균, 깅용화 (1990) 제초제 butachlor의 토양흡착. 한국환경농학회지 9:105-111
  19. 김정호 (1996) 토양중 trifluralin 의 용탈. 한국환경농학회지 15:464-471
  20. 김찬섭, 이진광, 최주현 (1994) 토양 중 농약의 행방에 관한 연구. 농약연구소 시험연구보고서
  21. 마상용, 문영희, 양환승 (1987) 식물체 및 토양중에 있어서 제초제 pretilachlor의 이동특성. 한국농화학회지 30:351-356
  22. 이석준, 김병하, 김장억 (1998) 제초제 paraquat의 토양중 흡. 탈착 특성. 농약과학회지 2:70-78
  23. 이재구, 오경석 (1993) Carbofuran, bentazon 및 TCBA 잔류물의 토양중 용탈. 한국환경농학회지 12:9-17
  24. 최주현, 김찬섭, 정영호 (1991) 시설재배지 토양 중 농약잔류량 조사. 농약연구소 시험연구보고서
  25. 황인택, 구석진, 홍경식, 조광연 (1990) 제초제의 토양 중 수직 이동성 검정. 한국잡초학회지 10:30-36
  26. 현해남, 오상실, 류순호 (1995) 제주도 대표 토양에서 alachlor와 chlorothalonil의 흡착과 이동 연구. 한국환경농학회지 14:135-143