Leaching potential of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils as affected by adsorption characteristics

Butachlor, ethoprophos, iprobenfos, isoprothiolane 및 procymidone의 토양흡착성에 따른 용탈 잠재성 평가

  • Kim, Chan-Sub (National Institute of Agriculture Science and Technology) ;
  • Lee, Byung-Moo (National Institute of Agriculture Science and Technology) ;
  • Ihm, Yang-Bin (National Institute of Agriculture Science and Technology) ;
  • Choi, Ju-Hyeon (National Institute of Agriculture Science and Technology)
  • 김찬섭 (농업과학기술원 작물보호부 농약안전성과) ;
  • 이병무 (농업과학기술원 작물보호부 농약안전성과) ;
  • 임양빈 (농업과학기술원 작물보호부 농약안전성과) ;
  • 최주현 (농업과학기술원 작물보호부 농약안전성과)
  • Published : 2002.12.27

Abstract

Soil adsorption study was carried out to define the mobility of pesticides or to evaluate leaching potential in soils. Five pesticides including ethoprophos, procymidone, iprobenfos, isoprothiolane, and butachlor were subjected to optimized adsorption experiment protocol for three types of cultivation soils. Freundlich adsorption coefficients (K) were ranged $0.35{\sim}0.95$ for ethoprophos, $0.98{\sim}2.2$ for iprobenfos, $1.2{\sim}4.3$ for procymidone, $1.5{\sim}3.5$ for isoprothiolane and $7.9{\sim}19$ for butachlor in three soils. Based on Koc values, ethoprophos was classified as mobile, iprobenfos, isoprothiolane and procymidone as moderately mobile and butachlor as slightly mobile. Two evaluation methods, Groundwater Ubiquity Score (GUS) index and standard indices of soil-chemical adsorption and biodegradation, were used for the estimation of pesticide leaching potential. Leachability of isoprothiolane and iprobenfos were evaluated as moderate, ethoprophos as a little potential, while butachlor and procymidone showed very low leaching potential. The leaching potential of pesticides was essentially determined on the basis of intrinsic properties of the pesticides and environmental properties. Among the soil properties, organic matter gave a great influence on the leachability of soils. Therefore, leachabilities of pesticides were expected less in loam with relatively higher organic matter than clay loam with lower organic matter.

주요 농약 5종의 토양에 대한 흡착계수를 구하여 이동성을 구분하고, 흡착계수와 토양 반감기를 이용하여 토양 중에서의 농약의 용탈 잠재성을 평가하고자 하였다. 국내에서 사용하고 있는 비이온성 농약인 토양살충제 ethoprophos, 원예용 살균제 procymidone, 도열병약 iprobenfos와 isoprothiolane 및 수도용 제초제 butachlor를 대상농약으로 선정하였고 토지이용 형태에 따라 논, 밭 및 산림토양으로 구분, 3종의 토양을 대상으로 흡착실험을 수행하였다. 각 토양에 대한 Freundlich 흡착계수(K)는 ethoprophos $0.35{\sim}0.95$, iprobenfos $0.98{\sim}2.2$, procymidone $1.2{\sim}4.3$, isoprothiolane $1.5{\sim}3.5$, butachlor $7.9{\sim}19$ 범위이었고, Koc에 의한 이동성 분류체계에 의하면 ethoprophos는 mobile, iprobenfos, isoprothiolane 및 procymidone은 moderately mobile, 그리고 butachlor는 slightly mobile 등급에 속하였다. 또한 유기물에 대한 흡착계수(Koc)와 토양 중에서의 반감기를 기준으로 지수화한 Groundwater Ubiquity Score (GUS) index 방법과 Koc와 분해상수 및 토양환경조건의 영향을 고려하는 흡착/분해 표준지수 방법을 이용하여 용탈잠재성을 평가하였다. 두 평가방법에 의하여 isoprothiolane과 iprobenfos은 중간 정도의 용탈 가능성이 있고 ethoprophos가 약간의 용탈 가능성이 있는 것으로 나타났으며 butachlor와 procymidone은 용탈 가능성이 매우 낮은 것으로 평가되었다. 상대적으로 유기물 함량이 높은 양토에서는 유기물 함량이 낮은 식양초에 비하여 농약의 용탈잠재성이 낮은 것으로 나타나 노약의 흡착에 직접적인 영향을 미치는 토양 유기물이 용탈 잠재성을 결정짓는 중요한 요인으로 작용하였다.

Keywords

References

  1. Alva, A. K., and M. Singh (1991) Sorption-desorption of herbicides in soil as influenced by electrolyte cations and ionic strength. J. Environ. Sci. Health B26:147-163
  2. Bewick, D. W. (1994) The mobility of pesticides in soil-studies to prevent groundwater contalllination. pp.57-86, In H. Boerner(ed.) Pesticides in ground and surface water. Springer-Verlag. Berlin
  3. Boesten, J. J. T. I. (1990) Influence of solid/liquid ratio on the experimental error of sorption coefficients in pesticide/soil systems. Pestic. Sci. 30:31-41
  4. Bottani, P., J. Keizer, and E. Funari (1996) Leaching indices of some major triazine metabolites. Chemosphere 32:1401-1411 https://doi.org/10.1016/0045-6535(96)00049-5
  5. Bruecher, J., and L. Bergstroem (1997) Temperature dependence of linuron sorption to three different agricultural soils. J. Environ. Qual. 26:1327-1335
  6. Clay, S. A., W. C. Koskinen, R. R. Allmaras, and R. H. Dowdy (1988) Differences in herbicide adsorption on soil using several soil pH modification techniques. J. Environ. Sci. Health B23:559-573
  7. Cox, L., M. C. Hermosin, and J. Cornejo (1995) Adsorption mechanisms of thiazafluron in mineral soil clay components. Euro. J. Soil Sci. 46:431-438
  8. Dousset, S., C. Mouvet, and M. Schiavon (1994) Sorption of terbuthylazine and atrazine in relation to the physico-chemical properties of three soils. Chemosphere 28:467-476 https://doi.org/10.1016/0045-6535(94)90291-7
  9. Dowing, K. C., R. G. Costella, and A. T. Lemley (1994) Behaviour of the insecticides ethoprophos and carbofuran during soil-water transport. Pestic. Sci. 41:27-33
  10. Gerstl, Z., and L. Kliger (1990) Fractionation of the organic matter in soils and sediments and their contribution to the sorption of pesticides. J. Environ. Sci. Health B25:729-741
  11. Hamaker, J. W., and J. M. Thompson (1972) Adsorption. pp.49-143, In Organic chemicals in the soil environment (ed. Goring, C. A. I., and J. W. Hamaker), Marcel Dekker, U.S.A.
  12. Jury, W. A., D. D. Focht, and W. J. Farmer (1987) Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. J. Environ. Qual. 16:422-428
  13. Kalouskova, N. (1989) Adsorption of atrazine on humic acids. J. Environ. Sci. Health B24:599-617
  14. Klute, A. (1980) Method of soil analysis. Part 1 - Physical and mineralogical methods. 2nd ed. American Society of America and Soil Science Society of America. Madison, Wisconsin
  15. McCall, P. J., R. L. Swann, D. A. Laskowski, S. M. Unger, S. A. Vrona, and H. J. Dishburger (1980) Estimation of chemical mobility in soil from liquid chromatographic retention times. Bull. Environ. Contam. Toxicol. 24:190-195
  16. Moreal, A., and R. van Bladel (1976) Influence of soil properties on adsorption of pesticide-derived aniline and $\rho$-chloroaniline. J. Soil Sci. 27:48-57
  17. Obrigawitch, T., F. M. Hons, J. R. Abernathy, and J. R. Gipson (1981) Adsorption, desorption, and mobility of metolachlor in soils. Weed Science. 29:332-336
  18. OECD. (1993) 106. Adsorption/Desorption. In OECD guidelines for testing of chemicals.
  19. Page, A. L. (1982) Method of soil analysis. Part 2 -Chemical and microbiological properties. 2nd ed. American Society of America and Soil Science Society of America. Madison, Wisconsin
  20. Piccolo, A., G. Celano, M. Arienza, and A. Mirabella (1994) Adsorption and desorption of glyphosate in some European soils. J. Environ. Sci. Health B29:1105-1115
  21. Roberts, T. R. (1996) Assessing the environmental fate of agrochemicals. J. Environ. Sci. Health B31:325-335
  22. Sanchez-Martin, M. J. and M. Sanchez-Camazano (1991) Relationship between the structure of organophosphorus pesticides and adsorption by soil components. Soil Sci. 152:283-288
  23. Sato, T., S. Kohnosu, and J. F. Hartwig. (1987) Adsorption of butachlor to soils. J. Agric. Food Chem. 35:397-402
  24. Somasundaram, L., K. Jayachandran, E. L. Kruger, K. D. Racke, T. B. Moorman, T. Dvorak, and J. R. Coats (1993) Degradation of isazofos in the soil environment. J. Agric. Food Chem. 41:313-318
  25. Swanson, R. A., and G. R. Dutt (1973) Chemical and physical processes that affect atrazine and distribution in soil systems. Soil Sci. Soc. Am. Proc. 37:872-876
  26. Tomlin, C.(ed.). (1997) The pesticide manual (11th ed.). British Crop Protection Council. UK
  27. US EPA. (1994) Sedment and soil adsorption isotherm. pp.157-161. In EPA guideline-code of federal regulation 40, part 790 to end
  28. von Oepen, B., W. Koerdel, and W. Klein (1991) Sorption of nonpolar and compounds to soils: Processes , measurements and experience with the applicability of the modified OECD-guideline 106. chemosphere 22:285-304 https://doi.org/10.1016/0045-6535(91)90318-8
  29. Weber, J. B., and C. T. Miller (1989) Organic Chemical Movement over and through soil. pp.305- 334, In Reactions and movement of organic chemicals in soils (ed Sawhney, B. L., and K. Brown), SSSA Inc., U.S.A.
  30. Worrall, F., A. Parker, J. E. Rae, and A. C. Johnson (1996) Equilibrium adsorption of isoproturon on soil and pure clays. Euro. J. Soil Sci. 47:265-272
  31. 강종국 (1996) 토양중 살충제 endosulfan의 흡탈착 특성에 관한 연구. 전남대학교 박사학위논문
  32. 권정욱, 이재구 (1997) $^{14}C$ 표지 imazapyr의 토양 중 무기화와 흡착. 한국환경농학회지16:320-326
  33. 김균, 김용화 (1990) 제초제 butachlor 의 토양흡착. 한국환경농학회지 9:105-111
  34. 문영희, 김윤태, 김영석, 한수곤 (1993) 토양중 살충제 ethoprophos의 분해성 및 이동성의 측정과 예측에 관한 모델 연구. 한국환경농학회지 12:209-218
  35. 임건재. (1998) 살균제 isoprothiolane의 수도생태계내행적. 전남대학교 박사학위논문
  36. 임선욱, 이중길, 한기학 (1977) 토양중에서 농약의 동태에 관한 연구 (제1보) 제초제 atrazine과 alachlor의 흡착에 대하여. 한국농화학회지 20:310-316
  37. 임수길, 봉원애 (1992) Alachlor와 paraquat의 토양흡착에 관여하는 토양인자에 대한연구. 한국환경농학회지 11:101-108
  38. 최주현, 김찬섭, 정영호 (1991) 시설재배지 토양 중 농약잔류량 조사. 농약연구소 시험연구보고서
  39. 한대성, 김정제, 신영오 (1984) 농업환경의 오염과 그 대책: 제1보 몇가지 제초제에 의한 토양 흡착의 이론적 분석. 한국환경농학회지 3:22-29
  40. 현해남, 오상설, 류순호 (1995) 제주도 대표 토양에서 alachlor와 chlorothalonil의 흡착과 이동 연구. 한국환경농학회지 14:135-143