DOI QR코드

DOI QR Code

Synthesis of Ceramic Support for Immobilization of Microorganisms Using Fly Ash

석탄회를 이용한 미생물 고정화 세라믹 담체 제조

  • Shin, Dae-Yong (Research Center for Advanced Mineral Aggregate Composite Products, Kangwon National University) ;
  • Han, Sang-Mok (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Choi, Shin-Geon (School of Biotechnology and Bioengineering, Kangwon National University)
  • 신대용 (강원대학교 석재복합 신소재제품 연구센터) ;
  • 한상목 (강원대학교 신소재공학과) ;
  • 최신건 (강원대학교 바이오산업공학부)
  • Published : 2002.01.01

Abstract

Porous ceramic supports with immobilized microorganisms for the water purifier were synthesized by firing green compacts of mixed powder comprising of fly ash, bentonite and an additive of yeast powder at 800∼1,000$^{\circ}C$ for 1h and the pore and mechanical properties of specimens were investigated. The compressive strength was increased in FB (Fly Ash + Bentonite) specimens while pore properties was decreased with increasing the bentonite content and sintering temperature. The compressive strength, bulk density, apparent density, porosity, mean pore size, pore volume and specific surface area of FB specimens at 800∼1,000$^{\circ}C$ were 89.6∼128.9 kgf/$cm^2$, 1.25∼1.43, 1.61∼1.78, 27.2∼62.2%, 7.9∼25.6 ${\mu}m$, 8.9∼$22.2{\times}10^{-5}\;cm^3/g$ and 35.2∼134.3 $m^2/g$, respectively. The pore properties of FBY (FB+yeast powder) specimens were superior to that of FB specimens, however compressive strength was decreased with increasing yeast powder content. The overall properties of 9F1B1Y (9F1B+10% of yeast powder) specimens at 900$^{\circ}C$ for 1 h were 98.7 kgf/$cm^2$, 1.20, 1.67, 68.1%, 48.9 ${\mu}m$, $29.5{\times}10^{-5}\;cm^3/g$ and 152.2 $m^2/g$, respectively. In this study, it was revealed that 9F1B1Y specimen demonstrated better S. saprophyticus adherence properties n their surface pores. Consequently, the microorganisms immobilized on porous ceramic supports showed better water purifying performance with many pores and adequate strength.

석탄회와 벤토나이트 및 이스트 분말의 성형체를 800∼1,000$^{\circ}C$에서 1시간 소성하여 수질정화용 미생물 고정화 세라믹 담체를 제조하여 기공${\cdot}$기계적 특성을 조사하였다. 석탄회와 벤토나이트(FB)시편은 벤토나이트의 첨가량과 소성온도가 증가함에 따라 기공특성은 감소하였으나 압축강도는 증가하였다. 800∼1,000$^{\circ}C$에서 소성한 FB시편은 압축강도 89.6∼128.9 kgf/$cm^2$, 부피비중 1.25∼1.43, 겉보기비중 1.61∼1.78, 기공률 27.2∼62.2%, 평균기공경 7.9∼25.6${\mu}m$, 기공용적 8.9∼$22.2{\times}10^{-5}\;cm^3/g$ 및 비표면적 35.2∼134.3 $m^2/g$을 나타내었다. 이스트 분말을 첨가한 FBY시편은 FB시편에 비하여 기공특성이 향상되었으나 압축강도는 감소하였다. 9F1B시편에 10wt%의 이스트 분말을 첨가하여 900$^{\circ}C$에서 1시간 소성한 9F1B1Y시편은 압축강도 98.7 kgf/$cm^2$, 부피비중 1.20, 겉보기비중 1.67, 기공률 68.1%, 평균기공경 48.9 ${\mu}m$, 기공용적 $29.5{\times}10^{-5}\;cm^3/g$ 및 152.2 $m^2/g$의 비표면적을 나타내었으며, 담체의 기공에 S. saprophyticus의 부착특성이 양호하여 수질정화용 미생물 고정화 담체로 이용이 가능하였다.

Keywords

References

  1. J. M. Lim, H. S. Shin, J. J. Jeong, N. H. Lee, M. H. Min and S. H. Lee, Industrial Wastewater Treatment Engineering; Vol. 1, pp. 69-81, Shinkwang Press, Seoul, 1996
  2. H. G. Song and G. H. Oh, Environmental Microbiology; Vol. 1, pp. 45-59, Dongwha Technoly Press, Seoul, 2000
  3. G. Bitton, wastewater Microbiology; vol. 1, pp. 89-198, John Wiley & Sons, INC., New York, 1994
  4. J. M. Lim, H. S. Shin, J. J. Jeong, N. H. Lee, M. H. Min and S. H. Lee, Industrial Wastewater Treatment Engineenng; Vol. 1, pp. 87-205, Shinkwang Press, Seoul, 1996
  5. J. K. Park, T. K. Lee and Y. Jeong, 'Ceramics Carrier for Wastewater Treatment,' Ceramist Kor., 3 [6] 11-9 (2000)
  6. H. Jeong and D. S. Jeong, 'Preparation and Application of Ceramic Filter for Water Purification,' Ceramist Kor., 3[6] 5-10 (2000)
  7. Y. H. Hwang, H. S. Lee, W. C. Lee, Y. D. Jeong and W. K Lee, 'Formation Mechanism of Low Density Ceramic Supports with Fly Ash,' J. Kor. Inst. Resour. Recycl, 9 [2] 33-9 (2000)
  8. J. P. Canler and J. M. Perret, 'Biological Aerated Filters Assessment of the Process Based on Sewage Treatment Plants,' Wat. Sci. Tech., 29 [10] 12-22 (1994)
  9. G. Valentis and J. Lesavre, 'Wastewater Treatment by Attached-growth Microorganism on Geotextile Support,' Wat. Sci. Tech., 22 [1/2] 43-51 (1990)
  10. M. Kawase, 'Application of Bioreactor by Ceramics Porous Materia1s(in Jpn.),' pp. 901-10 in Application of Biological Treatment Fermentation Industry, Characterization, Production and Application of Porous Materials, Edited by H. Dakeuchi, Fuji Techosystem, Toyko, 1999
  11. J. T. Song, S. D. Yun, D. W. Rhou and K. S. Han, 'Manufacture and Properties of Coal Fly Ash-Clay Body,' J. Kor. Ceram. Soc., 33 [7] 771-78 (1996)
  12. M. S. Lee, C. K. Na and M. Y. Klm, 'Resuability of Coal Fly Ash as an Additive for Clay Brick,' J. Kor. Solid Waste Eng, Soc., 15 [4] 342-51 (1998)
  13. D. Y. Shin and S. M. Han, 'Synthesis of Nano $TiO_2 Coated on Fly Ash Composites by the Precipitation Dropping Method,' J. Kor. Ceram. Soc., 39 [6] 550-57 (2002) https://doi.org/10.4191/KCERS.2002.39.6.550
  14. J. K. Lee, Engineering of Inorganic Raw Materials; pp. 68-75, Bando Press, Seoul, 1985
  15. K. N. Kim, J. H. Kwon and D. Y. Shin, 'The Manufacturing of Fly Ash-Clay System Ceramics Bricks,' J. Kor. Solid Wastes Eng. Soc., 18 [5] 459-67 (2001)
  16. K. Koizumi, M. Hatano and N. Tsuyuki. 'Synthesis and Properties of Porous Ceramics Using F1y-Ash(in Jpn.),' J. Ceram. Soc. Jpn., 106 [9] 899-903 (1998) https://doi.org/10.2109/jcersj.106.899

Cited by

  1. Effect of Clay-Mineral Composition on Flexural Strength of Clay-based Membranes vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.380
  2. Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports vol.52, pp.3, 2015, https://doi.org/10.4191/kcers.2015.52.3.180