DOI QR코드

DOI QR Code

Synthesis of β-tricalcium Phosphate by Using an Eggshell

달걀껍질을 이용한 생체용 β-tricalcium Phosphate 분말의 합성

  • Kwon, Myoung-Do (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Oh, Sun-Ho (School of Materials Engineering, Yeungnam University) ;
  • Lee, Sang-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 권명도 (국립목포대학교 신소재공학전공) ;
  • 오선호 (영남대학교 무기재료공학과) ;
  • 이상진 (국립목포대학교 신소재공학전공)
  • Published : 2002.01.01

Abstract

Biocompatible ${\beta}$-Tricalcium Phosphate(${\beta}$-TCP) powder was successfully synthesized by using a re-cycled eggshell and phosphoric acid. The crystallization behavior of the synthesized powder was dependent on the mixing ratio between the eggshell and phosphoric acid, the starting condition of the eggshell and calcination temperature. The ${\beta}$-TCP was stably synthesized in the 1:1.3~1:1.5 (wt%) mixing ratios of calcined eggshell and phosphoric acid. The synthesis was achieved at about $900{\circ}$ for 1h in an air atmosphere. The crystalline development and microstructure of the synthesized powder were examined by X-ray diffractometer and scanning electron microscopy.

생체재료의 일환으로 사용되고 있는 ${\beta}$-TCP(${\beta}$-Tricalcium Phosphate)를 합성하기 위하여 주원료인 칼슘을 화학약품이 아닌 천연재료인 달걀껍질을 이용하여 실험을 하였고, 이를 인산(phosphoric acid)과 혼합하여 ${\beta}$-TCP를 합성하였다. 본 연구에서는 인산의 혼합 량, 하소온도의 변화 그리고 달걀껍질의 출발물질 상태 등의 변수를 두고 실험을 실시하였다. 실험 변수에 따른 결과는 XRD 분석에 의해 결정상을 관찰하고, SEM에 의해 미세구조를 관찰하여 특성분석을 하였다. $900{\circ}$에서 하소한 달걀껍질을 인산과 함께 습식으로 볼 밀링 한 후, 이를 건조시켜 $900{\circ}$에서 1시간 동안 열처리하여 비교적 좁은 입도분포의 ${\beta}$-TCP 분말을 얻을 수 있었다. 차후 합성된 분말의 소결체를 이용하여, 생체 친화성과 뼈 속으로 대체되는 속도 등을 실험할 예정이다.

Keywords

References

  1. J. B. Park and R. S. Lakes, Biomaterials An Introduction; pp. 117-40, Plenum Press, New York, 1996
  2. L. L. Hench, 'Bioceramics,' J. Am. Ceram. Soc., 81 [7] 1705-28 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  3. S. R. Kim, Y. H. Kim, S. J. Jung and D. H. Riu, 'Synthesis and Characterization of Silicon Substituted Hydroxyapatite,' J. Kor. Ceram. Soc., 38 [12] 1132-36 (2001)
  4. H. J. Kim, S. C. Choi, J. W. Seok and R. Telle, 'Bone Cements in TTCP, DCPA, $\beta$ TCP and PHA System,' J. Kor. Ceram. Soc., 39 [1] 57-67 (2002) https://doi.org/10.4191/KCERS.2002.39.1.057
  5. A. M. Gatti, D. Zaffe and G. P. Poli, 'Behavior of Tricalcium Phosphate and Hydroxyapatite Granules in Sheep Bone Defects,' 'Biomaterls, 11 513-60 (1990) https://doi.org/10.1016/0142-9612(90)90068-2
  6. N. O. Engin and A. C. Tas, 'Preparation of Porous $Ca_{10}(PO_4)_6(OH)_2$ and $\beta$-$Ca_3(PO_4)_2$ Bioceramics,' J. Am. Ceram. Soc., 83 [7] 1581-84 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01434.x
  7. H. S. Ryu, H. J. Youn, K. S. Hong, B. S. Chang, C. K. Lee and S. S. Chung, 'An Improvement in Sintering Property of $\beta$-tricalcium Phosphate by Addition of Calcium Pyrophos-phate,' Biomaterials, 23 99-14 (2002)
  8. R. Famery, N. Richard and P. Boch, 'Preparation of $\alpha$ and $\beta$tricalcium Phosphate Ceramics, With and Without Magnesium Addition,' Ceram. Int., 20 327-36 (1994) https://doi.org/10.1016/0272-8842(94)90050-7
  9. S. C. Liou and S. Y. Chen, 'Transformation Mechanism of Different Chemically Precipitated Apatitic Precursors into $\beta$-thcalcium Phosphate upon Calcinations,' Biomatcrials, 23 4541-47 (2002) https://doi.org/10.1016/S0142-9612(02)00198-9
  10. S. Jinawath and P. Sujaridworakun, 'Fabrication of Porous Calcium Phosphates,' Mater. Sci. and Eng., C22 41-6 (2002)
  11. D. M. Liu, 'Fabrication and Characterization of Porous Hydroxyapatite Granules,' Biomatcrials, 17 1955-57 (1996) https://doi.org/10.1016/0142-9612(95)00301-0
  12. S. K. Kim, The Monthly Magazine for Ceramics; Vol. 2, pp. 68-73, Monthly Ceramic Co., Seoul, 1992

Cited by

  1. Effect of Room-temperature, Calcined Eggshell Reactants on Synthesis of Hydroxyapatite vol.52, pp.3, 2015, https://doi.org/10.4191/kcers.2015.52.3.204