DOI QR코드

DOI QR Code

Glass-alumina Composites Prepared by Melt-infiltration: II. Kinetic Studies

용융침투법으로 제조한 유리-알루미나 복합체: II. Kinetic 연구

  • Lee, Deuk-Yong (Department of Materials Engineering, Daelim College of Technology) ;
  • Jang, Joo-Wung (Dental Material Research Center, We DongMyung Co. Ltd.) ;
  • Lee, Myung-Hyun (Advanced Materials Analysis and Evaluation Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Jun-Kwang (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology) ;
  • Kim, Dae-Joon (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology) ;
  • Park, Il-Seok (Multifunctional Ceramics Research Center, Korea Institute of Science and Technology)
  • 이득용 (대림대학 재료정보공학과) ;
  • 장주웅 ((주)우리동명 치과재료연구소) ;
  • 이명현 (KICET 신소재분석평가팀) ;
  • 이준강 (KIST 복합기능세라믹센터) ;
  • 김대준 (KIST 복합기능세라믹센터) ;
  • 박일석 (KIST 복합기능세라믹센터)
  • Published : 2002.01.01

Abstract

Four commercial alumina powders having different particle size of $0.5{\mu}m,\;2.8{\mu}m,\;12{\mu}m,\;and\;45{\mu}m$ were presintered at 1120$^{\circ}C$ for 2h and then lanthanum aluminosilicate glass was infiltrated at 1100$^{\circ}C$ for 2h in the interval of 0.1h to investigate the penetration kinetic of the glass into the alumina preforms. The infiltration distance is parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, increases with raising the alumina particle size. The strength of glass-alumina composites increases as the alumina particle size reaches to 2.8${\mu}m$ due to the increase in packing, however, decreases with further increasing the alumina particle size. The fracture toughness of the composites rises with increasing the alumina particle size due to the crack bowing and the interaction between crack and alumina particles.

상용 알루미나 분말(0.5, 2.8, 12, 45 ${\mu}m$)을 die-press법을 이용하여 1120$^{\circ}C$에서 2시간 1차 소결하여 다공성 전성형체를 제조하고 1100$^{\circ}C$에서 0∼2시간까지 $La_2O_3-Al_2O_3-SiO_2$계 유리를 용융 침투시켜 유리 침투 깊이와 침투 시간간의 kinetic을 조사하였다. 침투시간이 증가할수록 유리 침투깊이는 Washburn 식의 포물선 관계를 가지면서 증가하였으며 침투 상수인 K는 알루미나 입도가 증가할수록 증가하였다. 유리-알루미나 복합체의 강도값은 2.8${\mu}m$ 알루미나가 분산된 복합체까지 충진률의 증가로 인하여 증가하다가 알루미나 입도가 증가할수록 감소하였다. 파괴인성은 알루미나 입도가 증가할수록 균열 휨 현상과 균열과 알루미나 입자간 결합에 의하여 증가하였다.

Keywords

References

  1. W. B. Hillig, 'Melt Infiltration Approach to Ceramic Matrix Composites,' Comm. Am. Ceram. Soc., 71(2), C96-C99 (1988)
  2. W. B. Hillig, 'Ceramic Composites by Infiltration,' Ceram. Eng. Sci. Proc., 6, 674-683 (1985) https://doi.org/10.1002/9780470320280.ch20
  3. D-J. Kim, M-H. Lee and C-E. Kim, 'Mechanical Properties of Tape-cast Alumina-glass Dental Composites,' J. Am. Ceram. Soc., 82(11), 3167-3172 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02219.x
  4. W. D. Wolf, L. F. Francis, C-P. Lin and W. H. Douglas, 'Melt-infiltration Processing and Fracture Toughness of Alumina-glass Dental Composites,' J. Am. Ceram. Soc., 76(10), 2691-2694 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb04004.x
  5. H. Hornberger, Strength Microstructure Relationships in a Dental Alumina Glass Composite, Ph.D. Dissertaion, University of Birmingham, 1995
  6. Y. Pan, X. S. Yi and J. L. Baptista, 'Kinetic Study of Cobalt Silicide Infiltration into Silicon Carbide Preforms,' J. Am. Ceram. Soc., 82(12), 3459-3465 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02265.x
  7. W-C. Tu and F. E. Lang, 'Liquid Precursor Infiltration Processing of Powder Compacts: I, Kinetic Studies and Microstructure Development,' J. Am. Ceram. Soc., 78(12), 3277-3282 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb07965.x
  8. E. J. Gonzalez and K. P. Trumble, 'Spontaneous Infiltration of Aluminaby Copper-oxygen Alloy,' J. Am. Ceram. Soc., 79(1), 114-120 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb07888.x
  9. X. M. Xi and X. F. Yang, 'Spontaneous Infiltration of Aluminum-silicon Alloy into Silicon Carbide Preforms in Air,' J. Am. Ceram. Soc., 79(1), 103-108 (1996)
  10. J. C. Rawers and W. R. Wrzesinski, 'Metal Infiltration of Sdected Intermetallics into SiC,' J. Mater. Sci. Lett., 9, 503-505 (1990) https://doi.org/10.1007/BF00725857
  11. S. Y. Choi and J. M. Ahn, 'Viscous Sintering and Mechanical Properties of 3Y-TZP-reinforced LAS Glass-cermaic Composites,' J. Am. Ceram. Soc., 80(12), 2982-2986 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb03223.x
  12. M-H. Lee, D-J. Kim, D. Y. Lee, J-H. Lee and C-E. Kim, 'Mechanical Properties of Alumina-glass Dental Composites Prepared from Aqueous-based Tape Casting,' J. Kor. Ceram. Soc., 36(12), 1123-1131 (1999)
  13. D. Y. Lee, J-w. Jang, M-H. Lee, D-J. Kim, I-S. Park, J-K. Lee and B-Y Kim, 'Glass-alumina Composites Prepared by Melt-infiltration: I. Effect of Alumina Particle Size,' J. Kor. Ceram. Soc., 38(9), 799-805 (2001)
  14. Standard Test-method for Biaxial Flexure Strength (Modulus of Rupture) of Ceramic Substrates, ASTM Designation F 394-78, Annual book of ASTM Standards Vol. 15.02, Section 15, 446-450. American Society for Testing and Materials, Philadelphia, PA, 1996
  15. International Standard of Implants for Surgery - Ceramic Materials Based on High Purity Alumina, ISO 6474:1994 (E), Geneve, Switzerland
  16. P. Chantikul, G. R. Anstis, B. R. Lawn and D. B. Marshall, 'Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II. Strength Method,' J. Am. Ceram. Soc., 64(9), 539-543 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb10321.x
  17. D. Y. Lee, D-J. Kim, M-H. Lee and J-W. Jang, 'Flaw Tolerance of (Y,Nb)-TZP/Al$_{2}$O$_{3}$ Composites,' J. Kor. Ceram. Soc., 38(1), 56-60 (2001)
  18. R. M. German, 'Sintering Densification for Powder Mixtures of Varying Distribution Widths,' Acta Metall. Mater., 40(9), 2085-2089 (1992) https://doi.org/10.1016/0956-7151(92)90125-X
  19. T. Yeh and M. D. Sacks, 'Effect of Particle Size Distribution on the Sintering of Alumina,' J. Am. Ceram. Soc., 71(12), C484-C487 (1988)
  20. J. Zheng and J. S. Reed, 'Effects of Particle Packing Characteristics on Solid-state Sintering,' J. Am. Ceram. Soc., 72(5), 810-817 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06222.x
  21. J. P. Smith andG. L. Messing, 'Sintering of Bimodally Distributed Alumina Powders,' J. Am. Ceram. Soc., 67(4), 238-242 (1984) https://doi.org/10.1111/j.1151-2916.1984.tb19495.x
  22. E. O. Einset, 'Capillary Infiltration Rates into Porous Media with Applications to Silcomp Processing,' J. Am. Ceram. Soc., 79(2), 333-338 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08125.x
  23. D. P. Hasselman and R. M. Fulrath, 'Proposed Fracture Theory of a Dispersion-strengthened Glass Matrix,' J. Am. Ceram. Soc., 49(2), 68-72 (1966) https://doi.org/10.1111/j.1151-2916.1966.tb13210.x