DOI QR코드

DOI QR Code

Effects of Passtein® Supplements on Protein Degradability, Ruminal Fermentation and Nutrient Digestibility

패스틴®첨가가 단백질 분해율과 반추위 발효 및 영양소 소화율에 미치는 영향

  • Choi, Y.J. (School of Agricultural Biotechnology, Seoul National University) ;
  • Choi, N.J. (School of Agricultural Biotechnology, Seoul National University) ;
  • Park, S.H. (School of Agricultural Biotechnology, Seoul National University) ;
  • Song, J.Y. (School of Agricultural Biotechnology, Seoul National University) ;
  • Um, J.S. (EUNJIN International, Co., Ltd.) ;
  • Ko, J.Y. (Nonghyup Feed INC.) ;
  • Ha, J.K. (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2002.10.31

Abstract

This study, including two in vitro experiments and an in vivo experiment were conducted to evaluate effects of Passtein$^{(R)}$ on crude protein degradability, ruminal fermentation characteristics and nutrient digestibility. In in vitro experiment protein degradability was examined using borate-phosphate buffer and neutral detergent, and using protease from Stroptomyces griseus at 39$^{\circ}C$ for 0, 2, 4, 8, 12, and 48 h. In addition, an in vivo experiment was conducted in a switch back design and ruminal fermentation and nutrient digestibility were determined. Four ruminal-fistulated Holstein cows weighing 300kg in mean body weight randomly allotted to 2 treatments (control and Passtein$^{(R)}$ supplementation). Although there was no significant difference on protein fraction between treatments, it appears that Passtein$^{(R)}$ supplementation decreased buffer soluble protein fraction compared to control. Protein degradability was not affected by Passtein$^{(R)}$ from 0 h to 4 h, but decreased at 12 h and 48 h compared to control. Degradation of immediately degradable fraction was higher in Passtein$^{(R)}$ treatment, but degradation of fermentable fraction was lower in Passtein$^{(R)}$ treatment compared to control. The pH and $NH_3$-N concentration tended to increase in Passtein$^{(R)}$ treatment, but VFA production, microbial counts and enzyme activity tended to decrease in Passtein$^{(R)}$ treatment compared to control. In addition, nutrient digestibility in the total tract tended to increase in Passtein$^{(R)}$ treatment compared to control.

본 시험은 패스틴$^{(R)}$ 을 첨가하였을 때, in vitro 상에서 단백질 fraction과 분해율에 미치는 영향과, in vivo 상에서 반추위 성상, 미생물 군집, 암모니아태 질소 농도 및 영양소 소화율에 미치는 영향을 구명하고자 실시하였다. In vitro 실험에서는 1mm로 분쇄된 대두박을 기질로 하여 패스틴$^{(R)}$ ((주)은진인터내셔날)을 첨가하여 borate-phosphate buffer와 중성세제에서의 조단백질 분해율을 측정하였으며, exogenous enzyme (Streptomyces griseus 유래 protease)를 이용하여 39$^{\circ}C$에서 0, 2, 4, 8, 12, 48 시간동안 배양 후 조단백질 분해율을 측정하였다. 반추위 발효성상과 영양소 소화율은 반추위 fistula가 부착된 평균체중 300kg의 홀스타인 수소 4두를 이용하여 무첨가구, 패스틴$^{(R)}$ 첨가구의 두개 처리구에 2마리씩 4마리를 배치하여 측정하였다. Buffer Soluble Protein fraction은 패스틴$^{(R)}$ 첨가 수준별로 차이가 없었으나, 무첨가구에 비해 패스틴$^{(R)}$ 첨가구에서 감소하는 경향을 보였다. 단백질 분해율은 배양 0 시간대에서 4시간대까지는 처리구간 유의성이 없었지만, 12 h과 48 h에서는 패스틴$^{(R)}$ 첨가로 시험구에서 감소되었다. 용해 단백질 분해율 ‘a’는 패스틴$^{(R)}$ 시험구에서 경미하게 높은 수치를 나타내었지만, 소화 가능한 단백질 분해율 ‘a+b’는 패스틴$^{(R)}$ 시험구에서 낮은 경향을 보였다. 패스틴$^{(R)}$ 첨가로 pH와 $NH_3$- N 농도는 증가하는 경향이었으며 휘발성지방산, 미생물 수 및 enzyme activity는 감소하였고 영양소 소화율은 높았으나 유의적인 차이는 없었다.

Keywords

References

  1. Aldrich, J. M., Muller, L. D. and Varga, G. A. 1993. Nonstructural carbohydrate and protein effects on rumen fermentation, nutrient flow, and performance of dairy cows. J. Dairy Sci. 76: 1091-1105. https://doi.org/10.3168/jds.S0022-0302(93)77438-X
  2. Bach, A. and Stern, M. D. 1999. Effects of different levels of methionine and ruminally undegradable protein on the amino acid profile of effluent from continuous culture fermenters. J. Anim. Sci. 77:3377-3384. https://doi.org/10.2527/1999.77123377x
  3. Bergen, W. C. and Owens, F. N. 1985. Manipulation of milk composition and nitrogen metabolism of ruminants. Anim. Health Nutr. 40: 32-35.
  4. Blackwelder, J. T., Hopkins, B. A., Diaz, D. E., Whitlow, L. W. and Brownie, C. 1998. Milk production and plasma gossypol of cows fed cottonseed and oilseed meals with or without rumen-undegradable protein. J. Dairy Sci. 81: 2934-2941.
  5. Casper, D. P., Shingoethe, D. J., Yang, C. M. J. and Mueller, C. R. 1987. Protected methionine supplementation with extruded blend of soybeans and soybean meal for dairy cow. J. Dairy Sci. 70:321-330. https://doi.org/10.3168/jds.S0022-0302(87)80013-9
  6. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
  7. Chalupa, W. 1980. Chemical control of rumen metabolism. Ruckebusch, P. Thivend (Eds.), Digestive Physiology and Metabolism in Rumi- nants, AVI Publishing, Westport, CT. pp.325 347.
  8. Chung, Y. S., Ha, J. K., Lee, S. S. and Kim, C. H. 1993a. Effects of metal ions on the ruminal microbial fermentation, proteolytic enzyme acti- vities. Korean J. Dairy Sci. 15:227-239.
  9. Chung, Y. S., Ha, J. K. and Lee, S. S. 1993b. Effects of zinc ion on the ruminal microbial population, proteolytic enzyme acrivities and feed protein degradation. Korean J. Dairy Sci. 15: 240-250.
  10. Erasmua L. J., Botha, P. M. and Meissner, H. H. 1994. Effect of protein source on ruminal fermentation and passage of amino acids to the small intestine of lactating cows. J. Dairy Sci. 77: 3655-3665. https://doi.org/10.3168/jds.S0022-0302(94)77310-0
  11. Erwin, E. S., Marco, J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1779. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  12. Gibson, S. A. W. and Macfarlane, G. T. 1988. Studies on the proteolytic activity of Bacteroides fragilis. J. Gen. Microbial. 134:2231-2240.
  13. Ha, J. K., Han, I. K., Koh, J. R., Baik, M. K. and Chang, J. S. 1988. Effects of protein level and source on the growth rate and digestion in Korean bulls. Kor. J. Anim. Nutr. Feed. 12: 209-213.
  14. Han, I. K., Ha, J. K., Choi, Y. J., Lee, N. H., Ko, Y. K., Lee, S. S. and Lee, J. B. 1995. Effects of the supplemental level of protected lysine on ruminal and blood parameters and digestibility in sheep. Kor. J. Anim. Nutr. Feed. 19:142-151.
  15. Hannah, S. M., Stern, M. D. and Ehle, F. R. 1986. Evaluation of a dual flow continous culture system for estimating bacterial fermentation in vivo of mixed diets containing various soya bean products. Anim. Feed Sci. Tech. 16:51-62. https://doi.org/10.1016/0377-8401(86)90049-0
  16. Hubbert, F. Jr., Cheng, E. and Burrough, W. 1958. Mineral requirment of rumen micro- organisms for cellulos digestive in vitro. J. Anim. Sci. 17:559-565.
  17. Hungate, R. E. 1966. The Rumen and Its Microbes. Academic Press, NY.
  18. Kim, B. J., Ha, J. K., Lee, S. S., Kim, H. D., Lee, J. B., Kim, C. H. and Kim, W. Y. 1996. Effects of nickel and zinc ions on the growth of prevotella ruminicola, proteolytic enzyme activities and disappearance of soybean meal in the rumen. Kor. J. Anim. Nutr. Feed. 20:147-158.
  19. Krishnamoorthy, U., Sniffen, Stern, C. J. M. D. and Van Soest, P. J. 1983. Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen-undegraded nitrogen content of feed stuffs. British J. Nutrition. 50:555-568. https://doi.org/10.1079/BJN19830127
  20. Licitra, G., Hernandez, T. M. and Van Soest, P. J. 1996. Standardization of porcedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Tech. 57:347-358. https://doi.org/10.1016/0377-8401(95)00837-3
  21. Licitra, G., Van Soest, P. J., Schadt, I., Carpino, S. and Sniffen, C. J. 1998. Improvement of the Streptomyces griseus method for degradable protein in ruminant feed. Anim. Feed Sci. Tech. 72:1-10. https://doi.org/10.1016/S0377-8401(97)00178-8
  22. Maiga, H. A. and Schingoethe, D. J. 1997. Optimizing the utilization of animal fat and ruminal bypass proteins in the diets of lactating dairy cows. J. Dairy Sci. 80:343-352. https://doi.org/10.3168/jds.S0022-0302(97)75944-7
  23. McCarthy, Jr. R. D., Klusmeyer, T. H., Vicini, J. L. and Clark, J. H. 1989. Effects of source of protein and carhohydrate on ruminal fermentation and passage of nutrients to the small intestine of lactating cows. J. Dairy Sci. 72:2002-2016. https://doi.org/10.3168/jds.S0022-0302(89)79324-3
  24. Miller, G. L., Blum, R., Glennon, W. E. and Burton, A. L. 1960. Measurement of carbo- xylmethylcellulase activity. Anal. Biochem. 1:127- 134. https://doi.org/10.1016/0003-2697(60)90004-X
  25. Papas, A., Hall, G. A. B., Hatfield, E. E. and Owens, F. N. 1974. Response of lambs to oral or abomasal supplementation of methionine hydroxy analog or methionine. J. Nutr. 104:653-659. https://doi.org/10.1093/jn/104.6.653
  26. Palmquist, D. L. 1984. Use of fats in diets for lactating cows. In: Fats in Animal Nutrition.(Ed. J. Wiseman), Butterworth, Boston, MA.
  27. Sala, T. C. 1957. The effect of trace minerals on cellulose digestion as studied in the artificial rumen. Ph. D. Dissertation. Univ. of Florida, Gainesville. Florida.
  28. SAS Institute, Inc. 1995. DAD. For Linear models: a guide to the ANOVA and GLM procedures. SAS. Inst. Inc., Cary, NC.
  29. Schor. A. and Gagliostro, G. A. 2001. Unde- gradable protein supplementation to early-lactation dairy cows in grazing conditions. J. Dairy Sci. 84:1597-1606. https://doi.org/10.3168/jds.S0022-0302(01)74593-6
  30. Stokes, S. R., Hoover, W. H., Miller, T. K. and Manski, R. P. 1991. Impact of carbohydrate and protein levels on bacterial metabolism in continuous culture. J. Dairy Sci. 74:860-870. https://doi.org/10.3168/jds.S0022-0302(91)78235-0
  31. Waltz, D. M., Stern, M. D. and Illg, D. J. 1989. Effect of ruminal protein degradation of blood meal and feather meal on the intestinal amino acid supply to lactating cows. J. Dairy Sci. 72:1509-1518. https://doi.org/10.3168/jds.S0022-0302(89)79261-4