Effect of Surfactant and Natural Organic Matter on Reductive Dechlorination of TCE by Zero-valent Iron

Zero-valent Iron(ZVI)에 의한 TCE의 탈염소화 반응에 계면활성제와 자연용존 유기물이 미치는 영향에 관한 연구

ParkCho, Jae-WooHyun-Hee;Park, Jae-Woo
조현희;박재우

  • Published : 20020400

Abstract

In situ permeable reactive barrier (PRB) technologies have been proposed to transform or remove pollutants from contaminated subsurface environment. The majority of installed PRBs utilize zero-valent iron (ZVI) as the reactive media converting contaminants to nontoxic or immobile species. In this research, the effects of surfactant and natural organic matter (NOM) on the dechlorination of trichloroethylene (TCE) by ZVI were examined. The dechlorination rate of TCE in the presence of ZVI with surfactant and NOM was higher than that without them. This was presumed to be caused by aqueous surfactant and NOM which sorbed TCE molecules in aqueous phase and facilitated the approach of TCE to ZVI surface.

반응벽체(permeable reactive barrier, PRB) 기술은 유독성 유기화합물로 오염된 지하환경으로부터 오염물질을 제거하거나 분해시키기 위한 기술이다. 반응벽체 기술에 사용되는 반응물질로 0가 철 (zero-valent iron. ZVI) 이 가장 광범위하게 연구되어져 있는데. ZVI의 산화는 독성이 높은 염소계 유기화합물을 독성이 낮은 물질로 탈염소화시킬 수 있다. 본 연구는 ZVI에 의하여 염소계 화합물인 TCE가 탈염소화 반응이 일어날 때 지하환경에 인공적으로 혹은 자연적으로 공존할 수 있는 계면활성제와 자연용존 유기물 (natural organic matter. NOM)의 영향을 알아보는 것을 그 목표로 한다. ZVI에 의한 TCE의 탈염소화 반응속도는 계면활성제와 NOM이 있을 때 더욱 증가하였는데 이는 수중에 존재하는 계면활성제와 NOM이 TCE가 ZVI로 접근하는 것을 용이하게 하여 탈염소화 반응속도를 증가시키는 것으로 사료된다.

Keywords

References

  1. Burris. D. R., Campbell, T. J., and Manoranjan, V. S., 'Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system.' Environ. Sci. Technol., 29(11), 2850-2855(1995) https://doi.org/10.1021/es00011a022
  2. Gillham. R. W. and O'Hannesin, S. F., 'Enhanced degradation of halogenated aliphatics by zero-valent iron,' Ground Water. 32(6). 958-967(1994) https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
  3. Orth, W. S. and Gillham. R. W., 'Dechlorination of trichloroethene in aqueous solution using $Fe^\circ$.' Environ. Sci. Technol.,30(1). 66-71(1996) https://doi.org/10.1021/es950053u
  4. Dens, B., Burris. D. R., and Campbell. T. J., 'Reduction of vinyl chloride in metallic iron-water Systems: Environ. Sci. Technol., 33(5). 2651-2656(1999) https://doi.org/10.1021/es980554q
  5. Tratnyek. P. G., 'rutting corrosion to use: remediating contaminated groundwater with zero-valent metals.' Chem. Ind., 1 July. 499-503(1996)
  6. Roberts. A. L., Totten. L. A., Arnold, W. A., Burris. D. R., and Campbell. T. J., 'Reductive elimination of chlorinated ethylenes by zero-valent metals.' Environ. Sci. Tecbnol., 30(8). 2654-2659(1996) https://doi.org/10.1021/es9509644
  7. Matheson. L. J. and Tratnyek, P. G., 'Reductive dehalogenation of chlorinated methanes by iron metal: Environ. Sci. Technol., 28(2), 2045-2053(1994) https://doi.org/10.1021/es00061a012
  8. Li, Z., 'Degradation of perchloroethylene by zero-valent iron modified with cationic surfactant: Advances in Environ. Res., 2(2), 244-250(1998)
  9. Loraine. G. A., 'Effects of alcohols. anionic and nonionic surfactants on the reduction of PCE and TCE by zero-valent iron.' Water Res., 35(6). 1453-1460(2001) https://doi.org/10.1016/S0043-1354(00)00422-X
  10. Kim. Y. H. and Caraway, E. R., 'Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons.' Environ. Sci. Technol., 34(0). 2014-2017(2000) https://doi.org/10.1021/es991129f
  11. Dombek. T., Dolan. E., Schultz, J., and Klarup, D., 'Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions.' Environ. Pollut., 111, 21-27(2001) https://doi.org/10.1016/S0269-7491(00)00033-6
  12. Fennelly. J. P. and Roberts, A. L., 'Reaction of 1.1.1-trichloroethane with zero-valent metals and bimetallic reductants.' Environ. Sci. Technol., 32(3). 1980-1988(1998) https://doi.org/10.1021/es970784p
  13. Bizzigotti. G. O., Reynolds. D. A., and Kueper. B. H., 'Enhanced solubilization and destruction of tetrachloroethylene by hydroxypropyl-$\beta$-cyclodextrin and iron.' Environ. Sci. Technol., 31(2), 472-478(1997) https://doi.org/10.1021/es960324g
  14. Sayles. G. D., You. G., Wang. M., and Kupferle. M. J., 'DDT. DDD. and DDE dechlorination by zero-valent iron.' Environ. Sci. Technol., 31(2). 3448-3454(1997) https://doi.org/10.1021/es9701669
  15. Park, J. W. and Boyd. S. A., 'Sorption of chlorobiphenyls in sediment/water systems with surfactants.' J. Environ. Qual., 28, 945-952(1999) https://doi.org/10.2134/jeq1999.00472425002800030027x
  16. Neupane. D. and Park. J. W., 'Binding of dialkylated disulfonated diphenyl oxide surfactant onto alumina in the aqueous phase.' Chemosphere, 38. 1-12(1999) https://doi.org/10.1016/S0045-6535(98)00378-6
  17. Neupane, D. and Park. J. W., 'Partitioning of naphthalene to gemini surfactant-treated alumina.' Chemosphere, 41. 787-792(2000) https://doi.org/10.1016/S0045-6535(99)00464-6
  18. Chiou. C. T., Malcolm. R. L., Brinton. T. I., and Kile, D. E., 'Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids.' Environ. Sci. Technol., 20(5). 502-508(1986) https://doi.org/10.1021/es00147a010
  19. Chiou. C. T., Kile. D. E., Brinton. T. I., Malcolm, R. L., and Leenheer, J. A., 'A comparison of water solubility enhancements and commercial humic acids.'Environ. Sci. Technol., 21(12). 1231-1234(1987) https://doi.org/10.1021/es00165a012
  20. Chin. Y. P., Aiken. G. R., and O'Loughlin, E., 'Molecular weight. polydispersity, and spectroscopic properties of aquatic humic substances.' Environ. Sci. Technol.,28(11). 1853-1858(1994) https://doi.org/10.1021/es00060a015
  21. Avena, M. J. and Koopal. L. K., 'Desorption of humic acids from an iron oxide surface.' Environ, Sci. Technol., 32(7), 2572-2577(1998) https://doi.org/10.1021/es980112e
  22. Johnson, T. L., Scherer, M. M., and Tratnyek, P. G., 'Kinetics of halogenated organic compounds degradation by iron metal.' Environ. Sci. Technol., 30(8), 2634 -2640(1996) https://doi.org/10.1021/es9600901
  23. Johnson. T. L., Fish, W., Gorby, Y. A., and Tratnyek, P. G., 'Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface.' J. Contam. Hydrol., 29, 378-398(1998)
  24. Alessi. D. S. and Li. Z., 'Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron.' Environ. Sci. Technol., 35(18), 3713-3717(2001) https://doi.org/10.1021/es010564i
  25. Dunnlvant. F. M., Schwarzenbach, R. P., and Macalady, D. L., 'Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter.' Environ. Sci. Technol., 26(1), 2133-2141(1992) https://doi.org/10.1021/es00035a010
  26. Curtis, G. P. and Reinhard, M., 'Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthra-hydroquinone disulfonate and humic acid.' Environ Sci. Technol., 28(3), 2393-2401(1994) https://doi.org/10.1021/es00062a026
  27. Ma. H., O'Loushlin, E. J., and Burris, D. R., 'Factors affecting humic-nickel complex mediated reduction of trichloroethene in homogeneous aqueous solution.' Environ. Sci. Technol., 35(4), 717-724(2001) https://doi.org/10.1021/es001314p