Preparation of $TiO_2$ by Flame Aerosol Synthesis and Its Application to VOCs Destruction I: Photocatalytic Properties of the Flame Synthesized $TiO_2$

화염 합성에 의한$TiO_2$제조와 VOCs 제거에 대한 적용 I :화염 합성 $TiO_2$의 광촉매적 성질

Lee, Jeung-Woo;Chang, Hyuk-Sang
이정우;장혁상

  • Published : 20020500

Abstract

The synthesis of the nano-sized $TiO_2$ particle by the flame aerosol process and its application to the VOCs destruction were studied. In order to evaluate the photocatalytic characteristics of the synthesized $TiO_2$ the effect of physical properties of the Ti02 particles such as the morphology of $TiO_2$ aggregates. crystalline phase and UV absorbance were studied. The $TiO_2$ particles generated from the flame aerosol reactor were deposited directly to the stainless mesh substrate. And the $TiO_2$ coated stainless mesh were used in the UV/$TiO_2$ photocatalytic reactor. Benzene decomposition rate was tested in the photocatalytic reactor. From the experimental works. it was found that the specific surface area and the anatase weight fraction among the synthesized particles were increased with decreasing the combustion equivalence ratios. And the UV absorbance of $TiO_2$ particle was blue shifted with decreasing the combustion equivalence ratios. Benzene decomposition rate in the germicidal lamp(UV-C) and $TiO_2$ photocatalytic reactor was remarkably higher than that of black light lamp(UV-A). The results may be caused by the higher generation rate of superoxide radical (${O_2}^-\;\cdot$) with increasing the generation rate of hole and electron on the surface of the $TiO_2$ photocatalyst by higher photon energy.

화염 에어로졸 공정을 이용한 나노크기 $TiO_2$ 입자의 합성과 합성된 $TiO_2$의 VOCs 광분해에 관한 실험적 연구가 수행되었다 .화염 합성된 $TiO_2$ 입자의 광촉매적 성질을 파악하기 위해 입자의 형상, 결정상, UV 흡수특성 등을 측정하였으며 화염 에어로졸 반응기로부터 생성되는 $TiO_2$ 입자를 스테인리스 격자망에 직접 코팅하여 UV/$TiO_2$ 광촉매 반응 시스템에 장착한 후 화염 합성된 $TiO_2$의 벤젠 분해특성을 살펴보았다. 합성된 $TiO_2$ 입자는 반응 조건인 연소 당량비가 낮아질수록 광촉매로서의 비표면적이 증가하였으며 광활성이 큰 anatase성분의 비율이 상대적으로 높았다. 또한 연소 당량비가 낮아짐에 따라 $TiO_2$ 입자의 자외선 흡수 파장이 blue shift함을 알 수 있었다. UV 광원에 따른 화염 합성 $TiO_2$ 입자의 벤젠 분해 실험을 통해 UV-C 영역이 UV-A 영역의 UV 광원에 비해 현저히 높은 벤젠 분해율을 나타내었는데 이는 상대적으로 높은 광에너지에 의해 $TiO_2$ 광촉매 표면에서 전자 및 정공의 생성율이 증가되어 반응기내의 산소와 결합하여 활성 산소 ( ${O_2}^-\;\cdot$)의 생성율을 증가시켰기 때문인 젓으로 파악된다.

Keywords

References

  1. Fujishima. A., Hashimoto. K., and Watanabe. T., $TiO_2$ Photocatalysis: Fundamentals and Applications. BKC Inc. (1999)
  2. Dibble, L. A. and Raupp, G. B., "Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air-streams." Environ. Sci. Technol., 26, 492-495(1992) https://doi.org/10.1021/es00027a006
  3. Alberci. R. M. and Jardim. W. M., "Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide." Appl. Catal., B. 14, 55-68(1997) https://doi.org/10.1016/S0926-3373(97)00012-X
  4. 김광영 "차세대 GIGA급 클린룸의 분자오염 제어 기술." 기계저널. 41(6). 40-46(2001)
  5. 주현구, 이동권. "환경기술과 광촉매 활용기술 (2): 광화학 반응에서의 광섬유." 첨단환경기술. 9. 110-115(2001)
  6. 최원용 "반도체 광촉매의 제조 및 개선 기술." 기계와 재료. 11(3), 117-130(1999)
  7. Fotou. G. P., Vemury. S., and Pratsinis. S. E., "Synthesis and Evaluation of Titania Powders for Photodestruction of Phenol." Chem. Eng. Sci., 49(24B). 4939-4948(1994) https://doi.org/10.1016/0009-2509(94)00394-7
  8. Pratsinis, S. E., "Flame Aerosol Synthesis of Ceramic Powders." Frog. Energy Combust. Sci., 24, 197-219(1998) https://doi.org/10.1016/S0360-1285(97)00028-2
  9. Suyama. Y. and Kato. A., "$TiO_2$ Produced by Vapor Phase Oxygenolysis of $TiCl_4$." J. Am. Ceram. Soc., 59, 146-149(1976) https://doi.org/10.1111/j.1151-2916.1976.tb09453.x
  10. Morooka. S., T. Yasutake. A., Kobata. K. I., and Kato. Y., "Mechanism of $TiO_2$ Fine Particle Formation by Gas-Phase Reaction." Int. Chem. Eng., 29(1), 119-126(1989)
  11. Pratsinis. S. E. and Spicer. P. T., "Competition between Gas-Phase and Surface Oxidation of $TiCl_4$ during Synthesis of $TiO_2$ Particles." Chem. Eng. Sci., 53(10), 1861-1868(1998) https://doi.org/10.1016/S0009-2509(98)00026-8
  12. Chang, H. S. and Biswas, P., "In Situ Scattering Dissymmetry Measurements of the Evolution of the Aerosol Size Distribution in Flame." J. Colloid Interface Sci ., 153(1). 157-166(1992) https://doi.org/10.1016/0021-9797(92)90307-8
  13. Sigma Scan Pro 5.0 User's manual. SPSS Science(1999)
  14. Spurr. R. A. and Myers. H., "Quatitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer." Anal. Chem., 29(5), 760-76(1957) https://doi.org/10.1021/ac60125a006
  15. Yang. G. and Biswas. P., "Deposition of Multifunctional Titania Ceramic Films by Aerosol Routes." J. Am. Ceram. Soc., 82(10). 2573-2579(1999) https://doi.org/10.1111/j.1151-2916.1999.tb02125.x
  16. Friedlander. S. K., Smoke, Dust and Haze. Oxford University Press(2000)
  17. Akhtar. M. K., Xiong. Y., and Pratsinis. S. E., "Vapor Synthesis of Titania Powder by Titanium Tetrachloride Oxidation." AIChE J., 37(10), 1561-1570(1991) https://doi.org/10.1002/aic.690371013
  18. Pratsinis. S. E., Zhu. W., and Vemury, S., "The role of gas mixing in flame synthesis of titania powders." Powder Technol., 86, 87-93(1996) https://doi.org/10.1016/0032-5910(95)03041-7
  19. Hoffmann. M. R., Matin, S. T., Choi. W. Y., and Bahnemann. D. W., "Environmental Applications of Semiconductor Photocatalysis." Chem. Rev., 95. 69-96(1995) https://doi.org/10.1021/cr00033a004
  20. Anpo. M., Shima. T., Kodama. S., and Kubokawa. Y., "Photocatalytic Hydrogenation of $CH_3CCH\;with\;H_20$ on Small- Particle $TiO_2$: Size Quantization Effects and Reaction Intermidates." J. Phys. Chem., 91. 4305-4310(1987) https://doi.org/10.1021/j100300a021