Treatment of Industrial Wastewater including Toxic Organic Compounds by Particle Packed-Bed Electrode Cell

입자 충전층 전극반응기를 이용한 독성유기화합물 함유 산업폐수처리

Yoon, Cho-Hee;Kim, Hark-Joon
윤조희;김학준

  • Published : 20020700

Abstract

The industrial wastewater including high-strength and toxic organic compounds as the COD of 1.347 mg/L to 2.749 mg/L was oxidized and decomposed by particle packed-bed electrode cells, which was packed with 5 mm $PbO_2$ ball in an anodic electrode side to increase its surface area for reaction. These cells were employed as batch and continuous types in this study. This study was conducted to investigate on the effect of varying cell current, electric charge, reaction temperature, additive, flowrates, cell types etc. to remove COD from wastewater. The results obtained were as follows. In a batch-type cell, the optimal current condition was 2.22 $A/dm^2$. And removal efficiency for COD was obtained 99.7%(initial COD 2.749 mg/L) when 1 F passed under optimal current density through this cell. The higher cell temperature, the faster decomposition rate of organic pollutant and the value of activated energy was 4.3 kJ/mol. It was shown that COD removal efficiency was better at pH 9 than at pH 7 in the presence of 17 mM NaCI as reaction accelerant. The theoretical decomposition voltage obtained was 5.8 V per a layer of bipolar cell. And the bipolar and continuous type cell was more effective for COD removal than the multimonopolar and batch type cell under the same conditions.

COD가 1.347 mg/L에서 2.749 mg/L 범위의 고농도 독성 유기화합물을 함유한 실제 산업폐수를 처리하기 위하여 양극에 $PbO_2$ 입자를 충전하여 반응표면적을 증가시킨 입자 충전층 전극반응기를 이용하여 폐수를 전해산화 분해하는 실험을 수행하였다. 전극반응기는 회분식 입자 충전층 전극반응기와 연속식 입자 충전층 전극반응기를 이용하였으며, 고농도 유기물함유 폐수를 처리하기 위해 전류, 전하량, 온도, 첨가제, 유량, 반응기의 형태 등 여러 전해조건들을 검토하여 얻은 결과는 다음과 같다. 회분식 반응기에서 최적 전류는 2.22 $A/dm^2$이었으며, 이 조건에서 1 F의 전기량을 흘렸을 때 99.7%(초기 COD 2.749 mg/L)의 COD 제거효율을 얻었다. 온도가 높을수록 전해 분해속도가 빨랐으며 활성화에너지는 4.3 kJ/mol이었다. 반응촉진제로서 NaCl를 첨가시에 중성(pH=7) 보다는 약알카리성 (pH=9) 에서 양호한 결과를 나타내었다. 그러나 고농도의 NaCl를 첨가하면 복극성 반응기의 기능이 저하되었다. 연속식 복극성 전극반응기의 한 층당 이론적 분해전압은 5.8 V이었다. COD의 제거효율을 향상시키기 위해서는 연속식 복극성 전극반응기가 회분식 다중단극성 전극반응기보다 효과적이었다.

Keywords

References

  1. Yoon. C. H., Cho. S. H., Kim. S. H., and Ha. S. R., "Catalytic Wet Air Oxidation of PNP Aqueous Solution using Multi-component Heterogeneous Catalysts." Water Sci. Technol., 43(2). 229-236(2001)
  2. Sahinede. D., Baki, E., and Ozcimder. R., "Wastewater Treatment at Petroleum Refinery using some Coagulants and Turkish Clays as Coagulant Aids." Water Res., 32(1). 3495-3499(1998) https://doi.org/10.1016/S0043-1354(98)00111-0
  3. 須灘雅夫, 小寺孝正. 日野陽室. 潟村 宙. '多孔板 搭型複極槽を利用するペロール腹水の酸化分解.' 日本. 大分大工, K110:436(1985).
  4. Stucki. S., Kotz. R., Career. B., and Suter. W., "Electrochemical Wastewater Treatment using High Overvoltage Anodes. Part II: Anode Performance and. Applications." Appl. Electrochem., 21(1). 99-104(1991) https://doi.org/10.1007/BF01464288
  5. Sharifian. H. and Kirk. D. W., "Electrochemical Oxidation of Phenol." J. Electrochem. Soc., 133(5). 921-924(1986) https://doi.org/10.1149/1.2108763
  6. Comninellis. Ch. and Pulgarin. C., "Anodic Oxidation of Phenol for Wastewater." J Appl. Electrochem., 21. 703-708(1991) https://doi.org/10.1007/BF01034049
  7. Comninellis. Ch. and Pulgarin. C., "Electrochemical Oxidation of Phenol for Wastewater Treatment using $SnO_2$ anodes." J. Appl. Electrochem., 23. 108-112(1993)
  8. Comninellis. Ch. and Nerini. A., "Anodic Oxidation of Phenol in the Presence of NaCl for Wastewater Treatment." J. Appl. Electrochem., 25. 23-28(1995)
  9. Kotz. R.. Stucki. S.. and Career. B., 'Electrochemical Wastewater Treatment using High Overvoltage Anodes Part I: Physical and Electrochemical Properties of $SnO_2$ Anodes.' J. Appl. Electrochem., 21. 14-20(1991) https://doi.org/10.1007/BF01103823
  10. 須麟雅夫, 野村直裕, 小出耕造. "直接電解法によるぺロール腹水の酸化分解." 化學工學論文集, 10, 43-48(1984)
  11. Bonvin. G. and ComnneIlis. Ch., "Scale-up of Bipolar Electrode Stack Dimensionless Numbers for Current Bypass Estimation." J. Appl. Electrochem., 24. 469-474(1994) https://doi.org/10.1007/BF00249844
  12. Gattrell. M. and Kirk. D. W., "The Electrochemical Oxidation of Aqueous Phenol at a Glassy Carbon Electrode." Can. J Chem. Eng., 68. 997-1003(1990) https://doi.org/10.1002/cjce.5450680615
  13. Tennakoon. C. L. K., Bhardwaj. R. C., and Bockris. J. O. M., "Electrochemical Treatment of Human Wastes in a Packed Bed Reactor." J. Appl. Electrochem., 26. 18-29(1996) https://doi.org/10.1007/BF00248184
  14. Wrigth. J. C. Michaels. A. S., and Appleby. A. J., "Electrooxidation of Urea at the Ruthenium Titanium Oxide Electrode." AIChE J., 32(9). 1450-1458(1986) https://doi.org/10.1002/aic.690320906
  15. Ross. N. C., Spackman. R. A., Hitchman. M. L., and White. P. C., "An Investigation of the Electrochemical Reduction of Pentachlorophenol with Analysis by HPLC." J. Appl. Electrochem., 27. 52-57(1997)
  16. Kirk. D. W.. Sharifian. H., and Foulkes. F. R., "Anodic Oxidation of Aniline for Wastewater Treatment." J. Appl. Electrochem.. 15. 1285-292(1985)
  17. Kusakabe. K.. Nishida. H., Morooka. S., and Kato. Y., "Simultaneous Electrochemical Removal of Copper and Chemical Oxygen Demand using a Packed-bed Electrode Cell." J. Appl. Electrochem., 16. 121-126(1986) https://doi.org/10.1007/BF01015992
  18. Do. J. S. and Yeh. W. C., "Paired Electrooxidative Degration of Phenol with in Situ Electrogenerated Hydrogen Peroxide and Hypochlorite." J. Appl. Electrochem., 26. 673-678(1996) https://doi.org/10.1007/BF00253467
  19. 환경부, 수질오염공정시험법(1998)