DOI QR코드

DOI QR Code

Papers : Three - dimensional assumed strain solid element for piezoelectric actuator/sensor analysis

3 차원 가정변형률 솔리드 요소를 이용한 압전 작동기/감지기 해석


Abstract

The paper deals with a fully assumed strain soild element that can be used for modeling of thin sensors and actuators. To solve fully coupled field problems, the eledtric potential is regarded as a nodal degree of freedom in addition to three translations in an eighteen node assumed strain soild element. Therefore, the induced electric potential can be calculated for a prescribed load and the actuation displacement can be computed for an input voltage. Since the assumed strain solid element can alleviate locking. A finite element code is developed based on the formulation and typical numerical examples are solved for code validation. Using the code, we have conducted parametric study for THUNDER actuator. It is found that a particular combination of materials for layer curvature of THUNDER improves the actuation displacement.

본 논문에서는 18절점 가정 변형률 솔리드 요소를 이용하여, 기계적 물리량과 전기적 물리량이 완전히 연성된 정적 문제를 해석할 수 있는 유한요소 정식화 과정을 유도하였다. 요소 결점의 축방향 변위 자유도 외에 전기 자유도를 추가하여 주어진 변위와 하중에 의해 발생하는 유도전압을 계산할 수 있다. 또한 가정 변형률 요소를 사용함으로써 박판형 구조물을 모델할 때 발생할 수 있는 잠김현상을 해소하였다. 유도된 유한요소 정식을 바탕으로 프로그램을 작성하였으며, 몇가지 수치예제에 적용하여 작성된 코드를 검증하였다. 본 요소를 이용하여, 여러 가지 변수가 THUNDER의 작동변위에 미치는 영향을 분석하였다. 이를 통하여, 특정한 재료와 곡률을 갖출 경우 THUNDER의 작동성능이 향상됨을 확인하였다.

Keywords

References

  1. G. H. Haertling, "Rainbow Actuators and Sensors: A New Smart Technology," Proc. of SPIE Conference, San Diego, CA, Vol 3040, 3-4 March, 1997, pp.81-92. https://doi.org/10.1117/12.267101
  2. K. M. Mossi and R. P. Bishop, "Characterization of Different types of High Performance THUNDER" Proc. of SPIE Conference, paper number 3675-05, Newport Beach, CA, 1-5 March, 1999.
  3. R. Hellbaum, R.G. Bryant, and R.L. Fox, "Thin Layer Composite Unimorph Ferroelectric Driver and Sensor," United States Patent No. 5,632,841, 1997.
  4. K.J. Yoon, J.H. Jung, N.S. Goo, H.C. Park, "Thermal deformation and residual stresses analysis of lightweight piezocomposite curved actuator," SPIE's 8th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, 1-5 March, 2001.
  5. H. Allin and T.J.R. Hughes, "Finite Element Method for Piezoelectric Vibration," International Journal for Numerical Method in Engineering, Vol. 2, 1970, pp.151-157. https://doi.org/10.1002/nme.1620020202
  6. H.S. Tzou, "Integrated distributed sensing and active vibration suppression of flexible manipulators using Distributed piezoelectrics," J. of Robotic Syst., 1989, Vol. 6, pp.746-767. https://doi.org/10.1002/rob.4620060606
  7. A. Benjeddou, "Advances in piezoelectirc finite element modeling of adaptive structural elements: A survey," Computers and Structures, Vol. 76, 2000, pp.347-363. https://doi.org/10.1016/S0045-7949(99)00151-0
  8. J.H. Han and I. Lee, "Active damping Enhancement of Composite Plates with electrod Designed Piezoelectric Materials," Journal of Intelligent Material, System and Structure, Vol. 8, 1997, pp.249-259. https://doi.org/10.1177/1045389X9700800306
  9. W.S. Hwang and H.C. Park, "Finite Element Modeling of Piezoelectric Sensors and Actuator," AIAA Journal, Vol. 31, No. 5, 1993, pp.930-937. https://doi.org/10.2514/3.11707
  10. M. Malik and A.K. Noor, "Accurate determination of transverse normal stresses in hybrid laminated panels subjected to electrothermo-mechanical loadings," International Journal for Numerical Method in Engineering, Vol. 47, 2000, pp.477-497. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<477::AID-NME780>3.0.CO;2-M
  11. H.J. Lee, D.A. Saravanos, "A mixed multi-field finite element formulation for thermopiezoelectirc composite shells," Int. J. for Solids and Structures, Vol. 37, 2000, pp.4949-4967. https://doi.org/10.1016/S0020-7683(99)00192-4
  12. C. Chee, L. Tong, and G. Steven, "A mixed model for adaptive composite plates with piezoelectric for anisotropic actuation," Computers and Structures, Vol. 77, 2000, pp.253-268. https://doi.org/10.1016/S0045-7949(99)00225-4
  13. J.W. Kim and V.V. Varadan and V.K. Varadan, "Finite Element Modeling of Structures Including Pezoelectric active Devices," International Journal for Numerical Method in Engineering, Vol. 40, 1997, pp.817-832. https://doi.org/10.1002/(SICI)1097-0207(19970315)40:5<817::AID-NME90>3.0.CO;2-B
  14. Y.H. Kim and S.W. Lee, "A Solid Element Formulation for Large Deflection Analysis of Composite Shell Structures," Computers and Structures, Vol. 30, 1988, pp.269-274. https://doi.org/10.1016/0045-7949(88)90232-5
  15. K.Y. Sze and L.Q. Yao, "Modelling Smart Structures with segmented Piezoelectric sensors and actuators", J. of Sound and Vibration, Vol. 235, No. 3, 2000, pp.495-520. https://doi.org/10.1006/jsvi.2000.2944
  16. Tzou, Piezoelectric Shells: Distributed Sensing and Control of Continua, Kluwer Academic Publishers, 1993.
  17. H. Kioua and S. Mirza, "Piezoelectric induced bending and twisting of lamintaed composite shallow shells", Smart Mater. Struct. September, 2000, pp.476-484. https://doi.org/10.1088/0964-1726/9/4/310