DOI QR코드

DOI QR Code

Mixed finite element formulation for folded plates

  • Eratli, Nihal (Faculty of Civil Engineering, Istanbul Technical University) ;
  • Akoz, A. Yalcin (Faculty of Civil Engineering, Istanbul Technical University)
  • Published : 2002.02.25

Abstract

In this study, a new functional is obtained for folded plates with geometric (kinematic) and dynamic (natural) boundary conditions. This functional is the combination of two different functionals. Both functionals are obtained for thick plates which carry in-plane and lateral forces. A new mixed finite element is developed with $4{\times}13$ nodal parameters for folded plates (REC52). Forces and moments which are the necessary unknowns in engineering problems are obtained directly using the technique suggested here. The use of the global co-ordinate system causes time consuming operations and therefore the Lagrange multiplier method is used to relate the components of the parameters on the fold line. Numerical results are presented for folded plates and compared with experimental results.

Keywords

References

  1. Akoz, A.Y., Omurtag, M.H., and Dogruoglu, A.N. (1991) "The mixed finite element formulation for three dimensional bars", Int. J. Solids Structures, 28, 225-234. https://doi.org/10.1016/0020-7683(91)90207-V
  2. Akoz, A.Y.N and Uzcan (Eratl ), N. (1992), "The new functional for Reissner plates and its application", Comp. & Struct., 44(5), 1139-1144. https://doi.org/10.1016/0045-7949(92)90334-V
  3. Akoz, A.Y., and Eratl , N. (2000), "A sectorial element based on Reissner plate theory", Struct. Eng. and Mech., 9(6), 519-540. https://doi.org/10.12989/sem.2000.9.6.519
  4. Akoz, A.Y., and Ozutok, A. (2000), "A functional for shells of arbitrary geometry and a mixed finite element method for parabolic and circular cylindrical shells", Int. J. Numer. Methods in Eng., 47, 1933-1981. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<1933::AID-NME860>3.0.CO;2-0
  5. Belytschko, T., Tsay, C.S., and Liu, W.K. (1981), "A stabilization matrix for the bilinear Mindlin plate element", Comp. Methods in Appl. Mech. and Eng., 29, 313-327. https://doi.org/10.1016/0045-7825(81)90048-7
  6. Develis and Reynolds (1967), Theory and Applications of Holography, Addison-Wesley Publishing Company.
  7. Eratl , N., and Aköz, A.Y. (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Comp. & Struct., 65, 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8
  8. Eratl Uzcan, N. (1995), "Finite element formulation for folded plates", Ph.D. thesis (in Turkish), Dept. of Civil Engineering, Istanbul Technical University.
  9. Huebner, K.H. (1975), The Finite Element Method for Engineers, John Wiles&Sons.
  10. Hughes, T.J.R., Taylor, R.L., and Kanoknukkulchai, W. (1977), "A simple and efficient finite element for plate bending", Int. J. Numer. Methods Eng., 11, 1529-1543. https://doi.org/10.1002/nme.1620111005
  11. Iffland, J.S.B. (1979), "Folded plate structures", J. Struct. Div., ASCE, 105, ST1, 111-123.
  12. Katili, I. (1993a), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I:An extended DKT element for thick-plate bending analysis", Int. J. Numer. Methods Eng., 36, 1859-1883. https://doi.org/10.1002/nme.1620361106
  13. Katili, I.. (1993b), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part II:An extended DKQ element for thick-plate bending analysis", Int. J. Numer. Methods Eng., 36, 1885-1908. https://doi.org/10.1002/nme.1620361107
  14. Lavy, Y., Bar-Yoseph, P., and Rosenhouse, G. (1992), "Mixed-hybrid finite strip method for folded plate structures", Comp. & Struct., 42(3), 433-446. https://doi.org/10.1016/0045-7949(92)90039-3
  15. Mindlin, R.D. (1951), "The influence of rotatory inertia and shear on the flexural motions of elastic plates", J. Appl. Mech. ,ASME, 18, 31-38.
  16. Ohga, M., Shigematsu, T., and Kohigashi, S. (1991), "Analysis of folded plate structures by a combined boundary element-transfer matrix method", Comp. & Struct., 41(4), 739-744. https://doi.org/10.1016/0045-7949(91)90183-M
  17. Ozmen, G. (1963), "Solution of prismatic shells with energy method", Ph.D. thesis (in Turkish), Dept. of Civil Engineering, Istanbul Technical University.
  18. Panc, V. (1975), Theories of Elastic Plates, Noordhoof International Publishing.
  19. Pugh, E.D.L., Hinton, E., and Zienkiewicz, O.C. (1978), "A study of quadrilateral plate bending elements with reduced integration", Int. J. Numer. Methods Eng., 12, 1059-1079. https://doi.org/10.1002/nme.1620120702
  20. Reddy, J.N. (1986), Applied Functional Analysis and Variational Methods in Engineering, McGraw-Hill.
  21. Reissner, E. (1946), "The effects of transverse shear deformation bending of elastic plates", J. Appl. Mech., ASME, 12, 69-77.
  22. Report of the Task Committee on Folded Plate Construction Committee on Masonry and Reinforced Concrete Structural Division, Phase I Report on Folded Plate Construction, J. Struct. Div., ASCE, 89, ST6, 365-406, 1963.
  23. Rockey, K.C., and Evans, H.R. (1967), "A finite element solution for folded plate structures", Proc. of Conference on Space Structures, Oxford, Blackwell, 165-188.
  24. Stroke, G.W. (1968), In Introduction to Coharvent Optics and Holography, Academic Press.
  25. Timoshenko, S. and Woinowisky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill.
  26. Zienkiewicz, O.C., Taylor, R.L., and Too, J. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Methods Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211
  27. Zienkiewicz, O.C., Bauer, J., Morgan, K., and Onate, E. (1977), "A simple and efficient element for axisymmetric shells", Int. J. Numer. Methods Eng., 11, 1545-1558. https://doi.org/10.1002/nme.1620111006

Cited by

  1. An assumed-stress hybrid element for static and free vibration analysis of folded plates vol.25, pp.4, 2007, https://doi.org/10.12989/sem.2007.25.4.405
  2. Finite element linear and nonlinear, static and dynamic analysis of structural elements, an addendum vol.19, pp.5, 2002, https://doi.org/10.1108/02644400210435843