Photocatalytic degradation of TCE using solar energy in POFR

플라스틱 광섬유 광촉매 반응기에서 태양에너지를 이용한 TCE의 광촉매 분해

  • Jeong, Hee-Rok (Department of Chemical Engineering, Yonsei University) ;
  • Moon, Il (Department of Chemical Engineering, Yonsei University) ;
  • Joo, Hyun-Ku (Photochemical Materials Research Team Korea Institute of Energy Research) ;
  • Jun, Myung-Seok (Photochemical Materials Research Team Korea Institute of Energy Research)
  • 정희록 (연세대학교 화학공학과) ;
  • 문일 (연세대학교 화학공학과) ;
  • 주현규 (한국에너지기술연구원 광화학소재연구팀) ;
  • 전명석 (한국에너지기술연구원 광화학소재연구팀)
  • Published : 2002.09.30

Abstract

The photocatalytic degradation of TCE using solar energy in POFR was studied. The use of solar energy was investigated in plastic optica fiber photocatalytic reactor (POFR). In POFR, the main parameters of photocatalytic degradation of TCE were lihgt intensity, thickness of $TiO_2$-coated film on plastic fiber core, the same of total $TiO_2$-coated surface area with changed length. We studied the apparent photonic efficiency and photocatalytic degradation rate of TCE in POFR. The apparent photonic efficiency of various light intensities was decreased by an incresed intensities. The photocatalytic activities of $TiO_2$-coated optical fiber reactor system depended on the coating thickness, and total clad-stripped surface area of POF. Photocatalytic degradation of trichloroethylene ($C_2HCl_3$, TCE) in the gas-phase was elucidated by using $TiO_2$-coated plastic optical fiber reactor. In TCE degradation, in-situ FTIR measurement resulted in mineralization into $CO_2$.

Keywords

References

  1. Hoffmann, M. R., Martin, S. T., Choi W. Y., and Bahnemann, D. W. (1995) Chem. Rev. 95, 69 https://doi.org/10.1021/cr00033a004
  2. Ollis, D. F. and Al-Ekabi, H. (1993), 'Photocatalytic Purification and Treatment of Water and Air', Elsevier
  3. Pellizzetti, E. and Serpone, N.(1986), 'Homogeneous and Heterogeneous Photocatalysis'. NATO ASI Series 174, Plenum, New York
  4. Hoffmann, M. R. and Peill, N. J.(1997) Journal of Solar Energy Engineering, 119, 229 https://doi.org/10.1115/1.2888024
  5. Marinangeli, R. E., Ollice, D. F.(1977), AIChE J. 23, 415 https://doi.org/10.1002/aic.690230403
  6. Marinangeli, R. E., Ollice, D. F.(1980), AIChE J. 26, 1000 https://doi.org/10.1002/aic.690260615
  7. Marinangeli, R. E., Ollice, D. F.(1982) AIChE J. 28, 945 https://doi.org/10.1002/aic.690280609
  8. 정희록, 주현규, 박상은, 전명석, 문 일(2001), 화학공학, 39, 352
  9. 정희록, 주현규, 박상은, 전명석, 문 일(2001), 한국태양에너지학회, 21(2), 45
  10. Hoffmann, M. R. and Peill, N. J.(1996), Environ. Sci. TechnoL, 30. 2806 https://doi.org/10.1021/es960047d
  11. Kleindienst, T. E., Shepson, P, B.,Nero, C. M., and Bufalini, J. J. (1989) Inter. J. Chem. Kinet., 21, 863 https://doi.org/10.1002/kin.550211002
  12. Kim, J.S., Itoh, K. and Murabayashi, M. (1998), Chemosphere, 36, 483 https://doi.org/10.1016/S0045-6535(97)00370-6
  13. Nimlos, M. R., Jacoby, W.A., Blake, D. M. and Milne, T. A. (1993). Environ. Sci. Technol, 27, 732 https://doi.org/10.1021/es00041a018
  14. Anpo, M., Shima, T., and Kubokawa Y. (1985), Chem. Lett., 1799
  15. Jacoby, W. A. Ph. D. Thesis (1993), University of Colorado
  16. Huybrechts, G. and Meyers, L. (1966) Trans. Faraday Soc., 62 2191 https://doi.org/10.1039/tf9666202191
  17. Sanhueza, E., Hisatsune, I. C., and Heicklen, J. (1966), Chem. Rev., 76,801 https://doi.org/10.1021/cr60304a006