DOI QR코드

DOI QR Code

Spatial Distribution of Pigment Concentration Around the East Korean Warm Current Region Derived from Satellite Data - Satellite Observation in May 1980 -

위성원격탐사에 의한 동한난류 주변 해역의 색소농도 공간적 분포 -1980년 5월 관측을 중심으로 -

  • Kim Sang Woo (Institute of Satellite Information Science, Pukyong National University) ;
  • Saitoh Sei-ich (Dept. of Fisheries and Marine Sciences, Hokkaido University) ;
  • Kim Dong Sun (Research center for ocean industrial development Pukyong National University)
  • 김상우 (부경대학교 위성정보과학연구소) ;
  • 재등성일 (북해도대학 수산학부) ;
  • 김동선 (부경대학교 해양산업개발연구소)
  • Published : 2002.05.01

Abstract

Spatial distribution of Phytoplankton Pigment Concentration (PPC) and Sea Surface Temperature (SST) around the East Korean Warm Current (EKWC) was described, using both Coastal Zone Color Scanner (CZCS) images and Advanced Very High Resolution Radiometer (AVHRR) images in May, 1980. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw (normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC (>2.0 mg/m^3) area appeared in the CZCS and AVHRR images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters alonB western thermal front of the warm streamer of the EKWC. In this region, the highest PPC occurred by a combination of the high absorption of the phytoplankton (443 nm) and highest reflectance of suspended materials (550 nm). Another high PPC ($\simeq$$6\;mg/m^3$) appeared in the warm water overlay region inside warm streamer. High phytoplankton pigment concentration of this region was corresponding to the short wavelength of 443 nm, which represented phytoplankton absorption of the CZCS image.

동한난류 주변 해역의 해색전선과 수온전선의 공간적 분포 특성을 CZCS와 AVHRR 위성자료를 이용하여 살펴보았다. 동한난류 주류의 난수 streamer 주변 해역의 색소농도와 SST의 공간적 분포를 살펴본 결과, 식물플랑크톤의 흡수보다는 황색물질이나 용존유기물질과 같은 부유물질에 의해 높은 색소농도를 나타낸 연안냉수해역, 연안의 부유물질에 의한 영향과 식물플랑크톤에 의한 영향이 혼합된 특성이 나타난 색소농도가 높은 수온전선의 냉수해역, 외해수의 특성과 유사한 순수한 식물플랑크톤의 영향에 의해 색소농도가 높은 난수중첩해역, 식물플랑크톤의 홉수에 의해 지배를 받고 있으나 색소농도가 적은 난수해역, 식물플랑크톤의 흡수에 의한 영향으로 색소농도가 높은 외해해역의 5개 범주로 구분할 수 있었다. 동해안을 따른 연안냉수해역의 높은 색소농도의 확장은 동한난류의 흐름에 크게 영향을 받고 있으며, 동한난류의 난수 내부에 있는 낮은 색소농도와 분리된다. 또한, 동한난류해역 주변의 색소 농도와 SST 사이의 관계는 전체적으로, 색소농도가 높은 곳은 수온이 낮은 곳에 나타나고 있으며, 색소농도가 낮은 곳은 수온이 높은 곳에서 나타났다. 색소농도가 가장 높게 나타난 것은 수온전선해역 냉수쪽에서 가장 높은 550nm 반사와 비교적 높은 443nm 흡수와 일치하는 일반적인 연안수와 같이 식물플랑크톤 단독으로 나타나는 것이 아니라 부유물질과 동시에 나타났다. 그리고, 또 다른 색소농도의 높은 농도가 외해수에서 나타난 것과 유사하게 난수 streamer 내부에서 나타났으며, 이것은 연안의 부유물질의 영향은 거의 받지 않은 식물플랑크톤에 의해 색소농도가 높은 것을 알았다. 동한난류 해역과 같이 색소농도가 높은 해역에서 SST와 색소농도 영상만으로 복잡한 물리 생물학적인 현상에 기인한 모든 현상을 이해하기는 어렵지만, 광범위한 해역에서 이러한 현상을 이해하는데 위성자료는 효과적인 수단으로 판단된다. 또한, 현재 운용중인 NASA의 Seastar에 탑재된 SeaWiFS (Sea-viewing Wide Field-of·view Sensor)에 의한 보다 정확한 식물플랑크톤 색소농도 자료는 현장에서 측정된 관측자료와 더불어 동한난류 해역의 물리$\cdot$생물학적인 시공간변동을 이해하는데 많은 도움을 줄 것이라 사료된다.

Keywords

References

  1. An,H.S.,K.S.Shim and H.R.Shin. 1994. On the warm eddies in the southwestern part of the East sea (the Japan Sea). J. Oceanol, Soc. Korea, 29, 152-163
  2. Arnone, R.A. and P.E. La Violette. 1986. Satellite definition of the bio-optical and thermal variation of coastal eddies associated with the African current. J. Geophys. Res., 91, 2351-2364 https://doi.org/10.1029/JC091iC02p02351
  3. Banse, K. and D.C. English. 1994. Seasonality of coastal zone color scanner phytoplankton pigment in the offshore oceans. J. Geo-phys. Res., 99, 7323-7345 https://doi.org/10.1029/93JC02155
  4. Eslinger, D.L., J.J. OBrien, R.L. Iverson. 1989. Empirical orthogonal function analysis of cloud-containing coastal zone color scanner images of northeastern North American coastal waters. J. Geo-phys. Res., 94, 10884-10890 https://doi.org/10.1029/JC094iC08p10884
  5. Fukushima, H. and J. Ishizaka. 1993. Special features and applica-tions of CZCS data in Asian waters, In Ocean Colour theory and Applications in a Decade of CZCS Experience, eds. V. Barale and P.M. Schlittenharadt, Kluwer Academic, pp. 213-236
  6. Gordon, H.R., D.K. Clark, J.W. Brown, O.B. brown, R.H.. Evans and W.W. Broenkow. 1983. Phytoplankton pigment concentration in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates. Appl. Opt., 22, 20-36 https://doi.org/10.1364/AO.22.000020
  7. Hovis, W.A., D.K. dark, F. Anderson, R.W. Austin, W.H. Wilson, E. T. Baker, D. Ball, H.R. Gordon, J.L. Mueller, S.Y. El Sayed, B. Sturm, R.C. Wrigley and C.S. Yentsch. 1980. Nimbus-7 coastal zone color scanner: System description and initial imagery. Science, 210, 60-63 https://doi.org/10.1126/science.210.4465.60
  8. Ishizaka, J., H. Fukushima, M. Kishino, T. Saino and M. Takahashi. 1992. Phytoplankton pigment distributions in regional upwelling around the Izu Peninsula detected by coastal zone color scanner on May 1982. J. Oceanogr., 48, 305-327 https://doi.org/10.1007/BF02233990
  9. Isoda, Y. and S. Saitoh. 1988, Variability of the sea surface tempera-ture obtained by the statistical analysis of AVHRR imagery - A case study of the south Japan Sea -. J. Oceanogr. Soc. Japan, 11, 52-59
  10. Isoda, Y., S. Saitoh and M. Mihara. 1991. SST structure of the polar front in the Japan Sea. In Oceanography of Asian Marginal Seas, Vol. 54. ed. K. Takano, Elsevier, Amsterdam, pp. 103-112
  11. Isoda, Y. and S. Saitoh. 1993. The northward intruding eddy along the east coast of Korea. J. Oceanogr., 49, 443-458 https://doi.org/10.1007/BF02234959
  12. Kim, S.W., S. Saitoh, J. Ishizaka, Y, Isoda and M. Kishino. 2000. Temporal and spatial variability of phytoplankton pigment Con-centrations in the Japan Sea derived from CZCS images. J. Oceanogr., 56, 527-538 https://doi.org/10.1023/A:1011148910779
  13. Matsumura, S. and H. Fukushima. 1988. Water mass analysis using ocean color map and sea surface temperature map obtained by NIMBUS-7/CZCS. Sora to Umi, 10, 27-39 (in Japanese with English abstract)
  14. Morel, A. and L. Prieur. 1977. Analysis of variations in ocean color. Limnol. Oceanogr., 22, 709-722 https://doi.org/10.4319/lo.1977.22.4.0709
  15. Obata, A., J. Ishizaka, M. Endoh. 1996. Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. J. Geophys. Res., 101, 20657-20667 https://doi.org/10.1029/96JC01734
  16. Saitoh, S. 1995. AVHRR on NOAA. In Oceanographic Applications of Remote Sensing, eds. M. Ikeda and F. W. Dobson, CRC Press, Boca Raton, pp. 407-417
  17. Sathyendranath, S., T. Platt, E.P.W. Home, W.G. Harrison, 0. Ulloa, R. Outerbridge and N. Hoepffner. 1991. Estimation of new Pro-duction in the ocean by compound remote sensing. Nature, 353, 129-133 https://doi.org/10.1038/353129a0
  18. Toba, Y., H. Kawamura, F. Yamashita and K. Hanawa. 1984. Structure of horizontal turbulence in the Japan Sea. In Ocean Hydrodynamics of the Japan and East China Seas, Vol. 39, ed. T. Ichiye, Elsevier Amsterdam, pp. 317-332
  19. Yentsch, C.S. and D.A. Phinney. 1985. Rotary motions and Convec-tion as a means of regulating primary production in warm Strea-mer rings. J. Geophys. Res., 90, 3237-3248 https://doi.org/10.1029/JC090iC02p03237
  20. Yoder, J.A., C.R. McClain, G.C. Feldman and W.E. Esaias. 1993. Annual cycles of phytoplankton chlorophyll concentrations in the global ocean: A satellite view. Global Biogeochem. Cycles, 7, 181-193 https://doi.org/10.1029/93GB02358
  21. 江波澄雄. 1974. 對馬煖流の浮魚資源. 對馬煖流, 水産學シリ-ズ5, 日本水産學倉編, pp.69-85
  22. 川合英夫. 1991. 對馬煖流系での總觀スケ-ルの構造と水産生物に及ぼす影響. 流れと生物と, 川合英夫薯, pp. 35-48
  23. 森勇. 1974. 西日本海夕域の生物學的特性. 對馬煖流, 水産學ツリ-·ズ5, 日本水産學會編, pp. 56-68

Cited by

  1. Interannual Variability of Common Squid Fishing Ground in the East Sea derived from Satellite and In-situ Data vol.22, pp.10, 2013, https://doi.org/10.5322/JESI.2013.22.10.1363
  2. Distribution of Fishing Boats at Night in the East Sea Derived from DMSP/OLS Imagery vol.38, pp.5, 2005, https://doi.org/10.5657/kfas.2005.38.5.323
  3. 해색영상을 이용한 동중국해 북부해역 하계 클로로필 a의 시공간 분포 vol.17, pp.1, 2002, https://doi.org/10.5322/jes.2008.17.1.085
  4. NOAA 수온영상 재처리 기법에 관한 연구 vol.17, pp.4, 2002, https://doi.org/10.7837/kosomes.2011.17.4.331