DOI QR코드

DOI QR Code

RELATIONSHIP BETWEEN CME KINEMATICS AND FLARE STRENGTH

  • MOON Y.-J. (Big Bear Solar Observatory, NJIT, Korea Astronomy Observatory) ;
  • CHOE G. S. (Plasma Physics Laboratory, Princeton University) ;
  • WANG HAIMIN (Big Bear Solar Observatory, NJIT) ;
  • PARK Y. D. (Korea Astronomy Observatory) ;
  • CHENG C. Z. (Plasma Physics Laboratory, Princeton University)
  • Published : 2003.06.01

Abstract

We have examined the relationship between the speeds of coronal mass ejections (CMEs) and the GOES X-ray peak fluxes of associated flares. Noting that previous studies were possibly affected by projection effects and random association effects, we have considered two sets of carefully selected CME-flare events: four homologous events and four well-observed limb events. In the respective samples, good correlations are found between the CME speeds and the GOES X-ray peak fluxes of the associated flares. A similarly good correlation is found for all eight events of both samples when the CME speeds of the homologous events are corrected for projection effect. Our results suggest that a close relationship possibly exists between CME kinematics and flaring processes.

Keywords

References

  1. ApJ v.502 The magnetic topology of solar cruptions Antiochos,S.K. https://doi.org/10.1086/311507
  2. ApJ v.541 A model of solar flares and their homologous behavior Choe,G.S.;Cheng,C.Z. https://doi.org/10.1086/309415
  3. J. Geophys. Res. v.101 Theory of prominence cruption and propagation: Interplanetary consequences Chen,J. https://doi.org/10.1029/96JA02644
  4. Space Sci. Rev. v.33 Coronal transient phenomena Dryer,M. https://doi.org/10.1007/BF00213256
  5. ApJ v.493 A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection Gibson,S.E.;Low,B.C. https://doi.org/10.1086/305107
  6. A&A v.304 The nature of solar flares associated with coronal mass ejection Harrison,R.A.
  7. Coronal Mass Ejections;AGU Geophysical Monograph 99 Soft X-ray signatures of coronal ejections Hudson,H.S.;Webb,D.F.;N.Crooker(ed.);J.A.Joselyn(ed.);J.Feynman(ed.)
  8. Coronal Mass Ejections, AGU Geophysical Monograph 99 An Introduction Hundhausen,A.J.;N.Crooker(ed.);J.A.Joselyn(ed.);J.Feynman(ed.)
  9. Sola Phys. v.50 Magnetic reconnection in the corona and the loop prominence phenomenon Kopp,R.A.;Pneuman,G.W.
  10. Geophys. Res. Lett. v.106 Tracing shock waves from the corona to 1 AU: Type Ⅱ radio emission and relationship with CMEs Leblanc,Y.;Dulk,G.A.;Vourlidas,A.;Bougeret,J.L. https://doi.org/10.1029/2000JA000260
  11. ApJ v.581 A statistical study of two classes of coronal mass ejections Moon,Y.J.;Choe,G.S.;Wang,H.;Park,Y.D.;Gopalswamy,N.;Yang,G.;Yashiro,S. https://doi.org/10.1086/344088
  12. Adv. Space Res. Magnetic helicity change rate associated with three X-class eruptive flares Moon,Y.J.;Chae,J.;Wang,H.;Park,Y.D.
  13. J. Geophys. Res. v.106 Eruption and acceleration of flare-associated coronal mass ejection loops in the low corona Neupert,W.M.;Thompson,B.J.;Gurman,J.B.;Plunkett,S.P. https://doi.org/10.1029/2000JA004012
  14. Geophys. Res. Lett. v.28 Recurrent flare/CME events from an emerging flux region Nitta,N.V.;Hudson,H.S. https://doi.org/10.1029/2001GL013261
  15. Numerical Recipes, the Art of Scientific Computing Press,W.H.;Flannery,B.P.;Teukolsky,S.A.;Vetterling,W.T.
  16. Solar Phys. v.126 Magnetic field evolution during prominence eruption and two-ribbon flares Priest,E.R.;Forbes,T.G. https://doi.org/10.1007/BF00153054
  17. ApJ v.451 Hot-plasma ejections associated with compact-loop solar flares Shibata,K.;Masuda,M.;Shimojo,M.;Hara,H.;Yokoyama,T.;Tsuneta,S.;Kosugi,T.;Ogawara,Y.
  18. Solar Phys. On the kinematic evolution of flareassociated CMEs Shanmugaraju,A.;Moon,Y.J.;Dryer,M.;Umapathy,S.
  19. ApJ v.548 Metastable magnetic configurations and their significance for solar eruptive events Sturrock,P.A.;Weber,M.;Wheatland,M.S.;Wolfson,R. https://doi.org/10.1086/318671
  20. ApJ v.569 Core and Large-scale structure of the 2000 November 24 X-Class flare and coronal mass ejection Wang,H.;Gallagher,P.;Yurchyshyn,V.;Yang,G.;Goode,P.R. https://doi.org/10.1086/339349
  21. ApJ v.559 On the temporal relationship between coronal mass ejections and flares Zhang,J.;Dere,K.P.;Howard,R.A.;Kundu,K.R.;White,S.M. https://doi.org/10.1086/322405
  22. ApJ v.566 Are homologous flarecoronal mass ejection events triggered by moving magnetic features? Zhang,J.;Wang,J. https://doi.org/10.1086/339660

Cited by

  1. Acceleration Phase of Coronal Mass Ejections: II. Synchronization of the Energy Release in the Associated Flare vol.241, pp.1, 2007, https://doi.org/10.1007/s11207-007-0291-x
  2. Solar Forcing of Climate. 1: Solar Variability vol.120, pp.3-4, 2005, https://doi.org/10.1007/s11214-005-7046-5
  3. A Study of Flare‐associated X‐Ray Plasma Ejections. III. Kinematic Properties vol.635, pp.2, 2005, https://doi.org/10.1086/497625
  4. On the Statistical Relationship Between CME Speed and Soft X-Ray Flux and Fluence of the Associated Flare vol.290, pp.5, 2015, https://doi.org/10.1007/s11207-015-0677-0
  5. Relationship between CME velocities and X-ray fluxes of associated flares vol.9, pp.4, 2009, https://doi.org/10.1088/1674-4527/9/4/009
  6. Coronal Mass Ejections Associated with Slow Long Duration Flares vol.283, pp.2, 2013, https://doi.org/10.1007/s11207-013-0251-6
  7. A Study of Flare‐associated X‐Ray Plasma Ejections. I. Association with Coronal Mass Ejections vol.622, pp.2, 2005, https://doi.org/10.1086/428031
  8. The CME-flare relationship: Are there really two types of CMEs? vol.435, pp.3, 2005, https://doi.org/10.1051/0004-6361:20042166
  9. Geoeffectiveness of Coronal Mass Ejections in the SOHO Era vol.290, pp.2, 2015, https://doi.org/10.1007/s11207-014-0613-8
  10. Solar eruptions: The CME-flare relationship vol.337, pp.10, 2016, https://doi.org/10.1002/asna.201612424
  11. New extrapolation method for coronal mass ejection onset time estimation vol.110, pp.A7, 2005, https://doi.org/10.1029/2005JA011098
  12. Measurement of the Energy Release Rate and the Reconnection Rate in Solar Flares vol.632, pp.2, 2005, https://doi.org/10.1086/444490
  13. Temporal comparison of nonthermal flare emission and magnetic-flux change rates vol.499, pp.3, 2009, https://doi.org/10.1051/0004-6361/200810947
  14. Statistical relationship between CME speed and soft X-ray peak flux of the associated flare during solar cycle 23 vol.8, pp.S300, 2013, https://doi.org/10.1017/S1743921313011678
  15. Relationship between CME dynamics and solar flare plasma vol.10, pp.5, 2010, https://doi.org/10.1088/1674-4527/10/5/007
  16. Homologous flare–CME events and their metric type II radio burst association vol.54, pp.9, 2014, https://doi.org/10.1016/j.asr.2014.07.002
  17. A Quantitative Study of the Homologous Flares on 2000 November 24 vol.613, pp.1, 2004, https://doi.org/10.1086/422862
  18. A statistical study of post-flare-associated CME events vol.51, pp.7, 2013, https://doi.org/10.1016/j.asr.2012.10.007
  19. MULTIPLE PLASMOID EJECTIONS AND ASSOCIATED HARD X-RAY BURSTS IN THE 2000 NOVEMBER 24 FLARE vol.711, pp.2, 2010, https://doi.org/10.1088/0004-637X/711/2/1062
  20. A STATISTICAL STUDY OF THE POST-IMPULSIVE-PHASE ACCELERATION OF FLARE-ASSOCIATED CORONAL MASS EJECTIONS vol.712, pp.1, 2010, https://doi.org/10.1088/0004-637X/712/1/752
  21. Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux – CME Mass Correlation vol.268, pp.1, 2011, https://doi.org/10.1007/s11207-010-9672-7
  22. Correlation between CME and Flare Parameters (with and without Type II Bursts) vol.270, pp.1, 2011, https://doi.org/10.1007/s11207-011-9752-3
  23. Flare-CME Models: An Observational Perspective (Invited Review) vol.290, pp.12, 2015, https://doi.org/10.1007/s11207-015-0712-1
  24. Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 – 2010 vol.291, pp.5, 2016, https://doi.org/10.1007/s11207-016-0892-3