DOI QR코드

DOI QR Code

Chemical Equilibrium and Synergism for Solvent Extraction of Trace Lithium with Thenoyltrifluoroacetone in the Presence of Trioctylphosphine Oxide

  • Kim, Young-Sang (Department of Advanced Material Chemistry, Korea University) ;
  • In, Gyo (Department of Advanced Material Chemistry, Korea University) ;
  • Choi, Jong-Moon (Department of Envitonmental Engineering, DongHae University)
  • Published : 2003.10.20

Abstract

Equilibria and applications of a synergistic extraction were studied for the determination of a trace lithium by using thenoyltrifluoroacetone (TTA) and trioctylphosphine oxide (TOPO) as ligands. Several equations were derived for the extraction of lithium into m-xylene as a phase of Li-TTA·mTOPO adduct. Distribution coefficients and extraction constant were determined together with a stability constant of the adduct. The adduct was quantitatively extracted from the basic solution of higher than pH 9 by shaking for 30 minutes. m-Xylene was selected as an optimum solvent by comparing the extraction efficiency among several kinds of organic solvents. The stability constant (${\Beta}_2$) for Li-TTA/2TOPO was 150 times higher than Li-TTA/TOPO. The distribution coefficient of Li-TTA/2TOPO into m-xylene was 9.12 and the logarithmic extraction constant (log $K_{ex}$) was 6.76. Trace lithium of sub-ppm level in seawater samples could be determined under modified conditions and a detection limit equivalent to 3 times standard deviation for background absorption was 0.42 ng/mL.

Keywords

References

  1. Sun, X. F.; Ting, B. T. G.; Zeisel, S. H.; Janghobani, M. Analyst1987, 112, 1223. https://doi.org/10.1039/an9871201223
  2. Park, C. J. Analyst 1996, 121, 1311. https://doi.org/10.1039/an9962101311
  3. Greenwood, N. N.; Earnshaw, A. Chemistry of the Element, 1stEd.; Pergamom Press Inc.: USA, 1984; pp 76-77.
  4. Bernhard, W. Atomic Absorption Spectrometry, 2nd Ed.; VCH:USA, 1976; pp 295-296.
  5. Fodor, P.; Barnes, R. M. Spectrochim. Acta 1980, 119, 67.
  6. Kim, Y. S.; Choi, J. M.; Park, S. J. Anal. Sci. & Tech. 1989, 2, 13.
  7. Kolthoff, I. M.; Elving, P. J. Treaties on Analytical Chemistry, 2ndEd.; John Wiley Sons: U.S.A., 1983; Vol. 3, p 478.
  8. Jeffery, G. H.; Bassett, J.; Mendhm, J.; Denny, R. C. Vogel'sTextbook of Quantitative Chemical Analysis, 5th Ed.; Longman:England, U.K., 1989; pp 169-170.
  9. Sekin, T.; Takaki, K. Bull. Chem. Soc. Jpn. 1993, 66, 2558. https://doi.org/10.1246/bcsj.66.2558
  10. Sekin, T.; Thi Kim Dung, N. Anal. Sci. 1993, 9, 851. https://doi.org/10.2116/analsci.9.851
  11. Noro, J.; Sekin, T. Bull. Chem. Soc. Jpn. 1992, 65, 1910. https://doi.org/10.1246/bcsj.65.1910
  12. Mukai, H.; Miyazaki, S.; Umetani, S.; Kihara, S.; Matsui, M.Anal. Chim. Acta 1989, 220, 111. https://doi.org/10.1016/S0003-2670(00)80255-X
  13. Mukai, H.; Umetani, S.; Matsui, M. Anal. Sci. 1997, 13(sup), 145.
  14. Umetani, S.; Sasayama, K.; Matsui, M. Anal. Chim. Acta 1982,134, 327. https://doi.org/10.1016/S0003-2670(01)84203-3
  15. Umetani, S.; Matsui, M. Bull. Chem. Soc. Jpn. 1983, 56, 3426. https://doi.org/10.1246/bcsj.56.3426
  16. Umetani, S.; Kihara, S.; Matsui, M. Anal. Chim. Acta 1990, 232,293. https://doi.org/10.1016/S0003-2670(00)81246-5
  17. Umetani, S.; Matsui, M. Anal. Chem. 1992, 64, 2288. https://doi.org/10.1021/ac00043a019
  18. Ohmiya, Y.; Sekin, T. Anal. Sci. 1996, 12, 249. https://doi.org/10.2116/analsci.12.249
  19. Sekin, T.; Minoyama, I.; Tebakari, M.; Noro, J. Bull. Chem. Soc.Jpn. 1997, 70, 1385. https://doi.org/10.1246/bcsj.70.1385
  20. Noro, J.; Sekin, T. Bull. Chem. Soc. Jpn. 1992, 65, 2729. https://doi.org/10.1246/bcsj.65.2729
  21. Noro, J.; Sekin, T. Bull. Chem. Soc. Jpn. 1993, 66, 450. https://doi.org/10.1246/bcsj.66.450
  22. Sekin, T.; Dyrssen, D. Anal. Chim. Acta 1967, 37, 217. https://doi.org/10.1016/S0003-2670(01)80662-0
  23. Sekin, T.; Takahashi, Y.; Ihara, N. Bull. Chem. Soc. Jpn. 1973, 46,388. https://doi.org/10.1246/bcsj.46.388
  24. Sekin, T.; Saitou, T. Bull. Chem. Soc. Jpn. 1983, 56, 700. https://doi.org/10.1246/bcsj.56.700
  25. Sekin, T.; Thi Kim Dung, N.; Noro, J. Bull. Chem. Soc. Jpn. 1994,67, 432. https://doi.org/10.1246/bcsj.67.432
  26. Sekin, T.; Hokura, A.; Tanaka, I. Anal. Sci. 1996, 12, 747. https://doi.org/10.2116/analsci.12.747
  27. Hokura, A.; Sekin, T. Anal. Sci. 1997, 13, 19. https://doi.org/10.2116/analsci.13.19
  28. Takazawa, Y.; Itabashi, H.; Kawamoto, H. Anal. Sci. 1996, 12,985. https://doi.org/10.2116/analsci.12.985
  29. Marvin, R. J.; Douglas, P. F.; Michael, C.; Norman, S. J. Am.Chem. Soc. 1971, 16, 2878.
  30. Machida, J.; Shibata, J.; Nishimura, S. Technology Reports ofKansai Univ.; Kansai, Jpn., 1979; No. 20, March, p 61.
  31. Kim, Y. S.; In, G.; Choi, J. M.; Lee, C. W. Bull. Korean Chem.Soc. 2000, 21, 855.
  32. Segar, D. A. Introduction to Ocean Sciences; Wadsworth: Belmont,U.S.A., 1998; pp 116-119.

Cited by

  1. Synthesis of Lithium Manganese Oxide by Wet Mixing and its Removal Characteristic of Lithium Ion vol.19, pp.4, 2013, https://doi.org/10.7464/ksct.2013.19.4.446
  2. Removal Characteristics of Lithium Ions by Fixed-bed Column Packed with Strong-Acid Cation Exchange Resin vol.20, pp.2, 2014, https://doi.org/10.7464/ksct.2014.20.2.166
  3. Breakthrough Characteristics for Lithium Ions Adsorption in Fixed-bed Column Packed with Activated Carbon by Modified with Nitric Acid vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1143
  4. The effect of dominant ions on solvent extraction of lithium ion from aqueous solution vol.31, pp.5, 2014, https://doi.org/10.1007/s11814-014-0005-7
  5. Adsorption Characteristics of Lithium Ions from Aqueous Solution using a Novel Adsorbent SAN-LMO Beads vol.24, pp.5, 2015, https://doi.org/10.5322/JESI.2015.24.5.641
  6. Kinetics and Equilibrium Isotherm Studies for the Aqueous Lithium Recovery by Various Type Ion Exchange Resins vol.26, pp.9, 2016, https://doi.org/10.3740/MRSK.2016.26.9.498
  7. Solvent extraction and stripping of lithium ion from aqueous solution and its application to seawater vol.35, pp.12, 2016, https://doi.org/10.1007/s12598-015-0453-1
  8. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review vol.91, pp.10, 2016, https://doi.org/10.1002/jctb.4976
  9. A Review on the Separation of Lithium Ion from Leach Liquors of Primary and Secondary Resources by Solvent Extraction with Commercial Extractants vol.6, pp.5, 2018, https://doi.org/10.3390/pr6050055
  10. Ab initio analysis of monomers and dimers of trialkylphosphine oxides: Structural and thermodynamic stability vol.109, pp.2, 2009, https://doi.org/10.1002/qua.21754
  11. Fundamental Study on Solvent Sublation Using Salphen and Its Application for Separative Determination of Trace Ni(II), Co(II) and Cu(II) in Water Samples vol.27, pp.11, 2003, https://doi.org/10.5012/bkcs.2006.27.11.1757
  12. TTA와 TOPO를 이용한 수용액 중의 리튬이온 용매추출 vol.51, pp.1, 2003, https://doi.org/10.9713/kcer.2013.51.1.53
  13. 폴리우레탄 폼에 LMO를 고정화하여 리튬이온 회수를 위한 새로운 PU-LMO 흡착제의 제조 vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.277
  14. Extraction of Uranyl Ion Using 2-Thenoyltrifluoro Acetone (HTTA) in Room Temperature Ionic Liquids vol.50, pp.3, 2003, https://doi.org/10.1080/01496395.2014.973523
  15. Liquid–liquid extraction of Li+ using mixed ion carrier system at room temperature ionic liquid vol.53, pp.10, 2003, https://doi.org/10.1080/19443994.2014.931534
  16. Synergistic interplay between D2EHPA and TBP towards the extraction of lithium using hollow fiber supported liquid membrane vol.51, pp.13, 2003, https://doi.org/10.1080/01496395.2016.1202280
  17. Liquid-Liquid Extraction and Chromatography Process Routes for the Purification of Lithium vol.959, pp.None, 2019, https://doi.org/10.4028/www.scientific.net/msf.959.79
  18. Selective removal of magnesium from lithium‐rich brine for lithium purification by synergic solvent extraction using β‐diketones and Cyanex 923 vol.66, pp.7, 2020, https://doi.org/10.1002/aic.16246
  19. Recovery of Lithium from Simulated Secondary Resources (LiCO3) through Solvent Extraction vol.12, pp.17, 2003, https://doi.org/10.3390/su12177179
  20. Extraction Mechanism of Lithium from the Alkali Solution with Diketonate-Based Ionic Liquid Extractants vol.34, pp.9, 2003, https://doi.org/10.1021/acs.energyfuels.0c02346
  21. Materials for lithium recovery from salt lake brine vol.56, pp.1, 2003, https://doi.org/10.1007/s10853-020-05019-1
  22. Solvent extraction for recycling of spent lithium-ion batteries vol.424, pp.no.pd, 2003, https://doi.org/10.1016/j.jhazmat.2021.127654