DOI QR코드

DOI QR Code

Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles

  • Jung, Oh-Jin (School of Environmental Engineering, Chosun University) ;
  • Kim, Sam-Hyeok (School of Environmental Engineering, Chosun University) ;
  • Cheong, Kyung-Hoon (School of Environmental Engineering, Chosun University) ;
  • Li, W. (Department of Materials Science and Engineering, and Physical and Astronomy,University of Delaware) ;
  • Saha, S. Ismat (Department of Materials Science and Engineering, and Physical and Astronomy,University of Delaware)
  • Published : 2003.01.20

Abstract

TiO₂nanoparticles were synthesized using the metallorganic chemical vapor deposition process. Particles with and without metal ion dopants were obtained. X-ray photoelectron and energy dispersive X-ray spectroscopic measurements confirmed the stoichiometry of the TiO₂nanoparticles. X-ray diffraction patterns showed a polycrystalline anatase structure of TiO₂. Transmission electron microscopy revealed that these particles are of nanoscale dimensions. Exact particle size and size distribution analyses were carried out by dynamic light scattering. The average particle size was determined to be 22 nm. The nanosize particles provided large surface area for photocatalysis and a large number of free surface-charge carriers, which are crucial for the enhancement of photocatalytic activity. To improve the photocatalytic activity, metal ions, including transition metal ions $(Pd^{2+},\;Pt^{4+},\;Fe^{3+})$ and lanthanide ion $(Nd^{3+})$ were added to pure TiO₂nanoparticles. The effects of dopants on photocatalytic kinetics were investigated by the degradation of 2-chlorophenol under an ultraviolet light source. The results showed that the TiO₂nanoparticles with the metal ion dopants have higher photocatalytic activity than undoped TiO₂. The $Nd^{3+}$ ion of these dopant metal ions showed the highest catalytic activity. The difference in the photocatalytic activity with different dopants is related to the different ionic radii of the dopants.

Keywords

References

  1. Hotchandani, S.; Kamat, P. V. J. Electrochem. Soc. 1992, 139,1630. https://doi.org/10.1149/1.2069468
  2. Rensmo, H.; Keis, K.; Lindstrom, H.; Soedergren, S.; Solbrand,A.; Hagfeldt, A.; Lindquist, S.-E.; Wang, L. N.; Muhammed, M. J.Phys. Chem. 1997, B 101, 2598.
  3. Bedja, I.; Kamat, P. V. J. Phys. Chem. 1995, 99, 9182. https://doi.org/10.1021/j100022a035
  4. Bjorksten, U.; Moser, J.; Gratzel, M. Chem. Mater. 1994, 6, 858. https://doi.org/10.1021/cm00042a026
  5. Litter, M. I.; Navio, J. A. J. Photochem. Photobiol. A: Chem.1994, 84, 183. https://doi.org/10.1016/1010-6030(94)03858-9
  6. Bickley, R. I.; Gonzalez-Carreno, T.; Gonzalez-Elipe, A. R.;Munuera, G.; Palmisano, L. J. Chem. Soc. Faraday Trans. 1994,90, 2257. https://doi.org/10.1039/ft9949002257
  7. Murata, Y.; Fukuta, S.; Ishikawa, S.; Yokoyama, S. Sol. EnergyMater. Sol. Cells 2000, 62, 157. https://doi.org/10.1016/S0927-0248(99)00148-8
  8. Wang, Y.; Cheng, H.; Hao, Y.; Ma, J.; Li, W.; Cai, S. J. Mater. Sci.1999, 34, 3721. https://doi.org/10.1023/A:1004611724069
  9. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.;Salbeck, J.; Spreitzer, H.; Gratzel, M. Nature 1998, 395, 583. https://doi.org/10.1038/26936
  10. Nozik, A. J.; Memming, R. J. Phys. Chem. 1996, 100, 13061. https://doi.org/10.1021/jp953720e
  11. Grela, M. A.; Brusa, M. A.; Colussi, A. J. J. Phys. Chem. 1997, B101, 10986.
  12. Kirk-Othmer Encyclopedia of Chemical Technology; Howe-Grant,M., Ed.; John Wiley & Sons, Inc.: 1997; Vol. 24, p 225.
  13. Palmisano, L.; Augugliaro, V.; Sclafani, A.; Schiavello, M. J.Phys. Chem. 1988, 92, 6710. https://doi.org/10.1021/j100334a044
  14. Choi, W.; Termin, A.; Hoffermann, M. R. J. Phys. Chem. 1994,98, 13669. https://doi.org/10.1021/j100102a038
  15. Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J. Y. J. Phys. Chem.1998, B 102, 10871.
  16. Wang, C.-C.; Zhang, Z.; Ying, J. Y. Nano Structured Mater. 1997,9, 583. https://doi.org/10.1016/S0965-9773(97)00130-X
  17. Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Chem. Mater. 1995, 7, 663. https://doi.org/10.1021/cm00052a010
  18. Wang, Y.; Hao, Y.; Cheng, H.; Ma, J.; Xu, B.; Li, W.; Cai, S. J.Mater. Sci. 1999, 34, 2773. https://doi.org/10.1023/A:1004658629133
  19. Akhtar, M. K.; Xiong, Y.; Pratsinis, S. E. AIChE J. 1991, 37, 1561. https://doi.org/10.1002/aic.690371013
  20. Ding, Z.; Hu, X.; Lu, G. Q.; Yue, P.-L.; Greenfield, P. F. Langmuir2000, 16, 6216. https://doi.org/10.1021/la000119l
  21. Okuyama, K.; Kousaka, Y.; Tohge, N.; Yamamoto, S.; Wu, J. J.;Flagan, R. C.; Seinfeld, J. H. AIChE J. 1986, 32, 2010. https://doi.org/10.1002/aic.690321211
  22. Okuyama, K.; Jeung, J.-T.; Kousaka, Y. Chem. Eng. Sci. 1989, 44,1369. https://doi.org/10.1016/0009-2509(89)85010-9
  23. Okuyama, K.; Ushio, R.; Kousaka, Y.; Flagan, R. C.; Seinfeld, J.H. AIChE J. 1990, 36, 409. https://doi.org/10.1002/aic.690360310
  24. Ismat Shah, S.; Li, W. unpublished.
  25. Freeware form http://www.ccp14.ac.uk/tutorial/xfit-95/.
  26. Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley:Menlo Park, CA, 1978.
  27. Sclafani, A.; Palmisano, L.; Davi, E. J. Photochem. Photobiol. A:Chem. 1991, 56, 113. https://doi.org/10.1016/1010-6030(91)80011-6
  28. Vidal, A.; Herrero, J.; Romero, M.; Sanchez, B.; Sanchez, M. J.Photochem. Photobiol. A: Chem. 1994, 79, 213. https://doi.org/10.1016/1010-6030(93)03763-7
  29. Handbook of X-ray Photoelectron Spectroscopy; Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E., Eds.; Perkin-Elmer corporation: 1979.
  30. Sen, S. K.; Riga, J.; Verbist, J. Chem. Phys. Lett. 1976, 39, 560. https://doi.org/10.1016/0009-2614(76)80329-6
  31. Sarma, D. D.; Rao, C. N. R. J. Electron Spectrosc. Relate. Phenom.1980, 20, 25. https://doi.org/10.1016/0368-2048(80)85003-1
  32. Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. J. Nanoparticle Res.1999, 1, 439. https://doi.org/10.1023/A:1010044830871
  33. Shannon, R. D. Acta Crystallogr. 1976, A 32, 751.
  34. Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. 1969, B 25, 925.
  35. Jung, O. J.; Kim, I. K.; Saha, I. S. (Structure and size distribution of Nd(III) doped $TiO_2$ nanoparticle) Material Science and Engineering B, in press.
  36. Fotou, G. P.; Pratsinis, S. E. Chem. Eng. Comm. 1996, 151, 251. https://doi.org/10.1080/00986449608936551
  37. Jung, O. J. Bull. Korean Chem. Soc. 2001, 22, 1188.

Cited by

  1. Lanthanide modified semiconductor photocatalysts vol.2, pp.4, 2012, https://doi.org/10.1039/c2cy00552b
  2. Synthesis of Carbon Nanotubes from Catalytic Decomposition of C2H2 through Pd/Al2O3 Catalysts vol.24, pp.12, 2003, https://doi.org/10.5012/bkcs.2003.24.12.1771
  3. Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD vol.25, pp.11, 2003, https://doi.org/10.5012/bkcs.2004.25.11.1661
  4. Photodecomposition of Concentrated Ammonia over Nanometer-sized TiO2, V-TiO2, and Pt/V-TiO2 Photocatalysts vol.28, pp.4, 2003, https://doi.org/10.5012/bkcs.2007.28.4.581
  5. Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity vol.270, pp.1, 2003, https://doi.org/10.1016/j.molcata.2007.01.031
  6. Photocatalytic degradation of persistent organic pollutants under visible irradiation by TiO2 catalysts sensitized with Zn(II) and Co(II) tetracarboxy-phthalocyanines vol.20, pp.8, 2016, https://doi.org/10.1142/s108842461650084x
  7. Controlled tethering of Ag nanoparticles to alter photocatalytic performance of TiO2 vol.6, pp.11, 2003, https://doi.org/10.1088/2053-1591/ab46dc