DOI QR코드

DOI QR Code

Effect of Amine Nature on Rates and Mechanism: Pyridinolyses of 4-Nitrophenyl Benzoate

  • Um, Ik-Hwan (Department of Chemistry, Ewha Womans University) ;
  • Baek, Mi-Hwa (Department of Chemistry, Ewha Womans University) ;
  • Han, Hyun-Joo (Department of Chemistry, Ewha Womans University)
  • Published : 2003.09.20

Abstract

Pseudo-first-order rate constants ($k_{obs}$) have been measured spectrophotometrically for the reactions of 4-nitrophenyl benzoate with a series of pyridines in $H_2O$ containing 20 mol % DMSO. The plots of kobs vs pyridine concentration are linear up to ca. 0.1 M pyridines, indicating that the effect of self-association of pyridines with their conjugate acids are insignificant in this concentration range. The Bronsted-type plot has been obtained to be linear with a ${\beta}_{nuc}$ value 1.11, suggesting that the pyridinolyses proceed through a rate-determining breakdown of the zwiterionic addition intermediate. The pyridines studied have shown higher reactivity than isobasic primary and secondary amines toward the substrate. 1-Benzoyl-4-dimethylaminopyridinium ion, a possible intermediate, has not been detected since the rate of its hydrolysis in the reaction condition is comparable with or even faster than its formation.

Keywords

References

  1. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96,7018-7031. https://doi.org/10.1021/ja00829a034
  2. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks,W. P. J. Am. Chem. Soc. 1993, 115, 1650-1656. https://doi.org/10.1021/ja00058a006
  3. Jencks, W. P.;Brant, S. R.; Gandler, J. R.; Fendrich, G.; Nakamura, C. J. Am.Chem. Soc. 1982, 104, 7045-7051. https://doi.org/10.1021/ja00389a027
  4. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
  5. Menger, F. M.; Eliseev, A. V.; Khanjin, N. A.; Sherrod,M. J. J. Org. Chem. 1995, 60, 2870-2878. https://doi.org/10.1021/jo00114a043
  6. Adalsteinsson, H.;Bruice, T. C. J. Am. Chem. Soc. 1998, 120, 3440-3447. https://doi.org/10.1021/ja972162+
  7. Castro, E. A.; Galvez, A.; Leandro, L.; Santos, J. G. J. Org.Chem. 2002, 67, 4309-4315. https://doi.org/10.1021/jo025562a
  8. Castro, E. A.; Leandro, L.;Quesieh, N.; Santos, J. G. J. Org. Chem. 2001, 66, 6130-6135. https://doi.org/10.1021/jo0157371
  9. Castro, E. A.; Saavedra, C.; Santos, J. G.; Umana, M. I. J. Org.Chem. 1999, 64, 5401-5407. https://doi.org/10.1021/jo990084y
  10. Castro, E. A.; Cubillos, M.;Santos, J. G. J. Org. Chem. 1996, 61, 3501-3505. https://doi.org/10.1021/jo951726u
  11. Castro, E. A.;Ibanez, F.; Santos, J. G.; Ureta, C. J. Org. Chem. 1993, 58, 4908-4912. https://doi.org/10.1021/jo00070a028
  12. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org.Chem. 1997, 62, 5780-5784. https://doi.org/10.1021/jo970413r
  13. Koh, H. J.; Han, K. L.; Lee, H.W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 715-720. https://doi.org/10.5012/bkcs.2002.23.5.715
  14. Oh, H.K.; Kim, S. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 22001, 1753-1757.
  15. Lee, I.; Lee, H. W.; Lee, B. C.; Choi, J. H.Bull. Korean Chem. Soc. 2002, 23, 201-204. https://doi.org/10.5012/bkcs.2002.23.2.201
  16. Song, H. B.;Choi, M. H.; Koo, I. S.; Oh, H. K.; Lee, I. Bull. Korean Chem.Soc. 2003, 24, 91-94. https://doi.org/10.5012/bkcs.2003.24.1.091
  17. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67,8999-9005. https://doi.org/10.1021/jo0259360
  18. Um, I. H.; Chung, E. K.; Lee, S. M. Can. J. Chem.1998, 76, 729-737. https://doi.org/10.1139/cjc-76-6-729
  19. Um, I. H.; Kwon, H. J.; Kwon, D. S.; Park,J. Y. J. Chem. Res. (M) 1995, 1801-1817.
  20. Um, I. H.; Lee, E. J.;Lee, J. P. Bull. Korean Chem. Soc. 2002, 23, 381-384. https://doi.org/10.5012/bkcs.2002.23.3.381
  21. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600. https://doi.org/10.1021/jo00219a029
  22. Kirby, A. J.; Jencks, W. P. J. Am. Chem. Soc. 1965, 87, 3209-3216. https://doi.org/10.1021/ja01092a036
  23. Fersht, A. R.; Jencks, W. P. J. Am. Chem. Soc. 1970, 92, 5432-5442. https://doi.org/10.1021/ja00721a023
  24. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. https://doi.org/10.1021/jo00360a007
  25. Castro, E. A.; Garcia, P.; Leandro, L.; Quesieh, N.; Rebolledo, A.;Santos, J. G. J. Org. Chem. 2000, 65, 9047-9053. https://doi.org/10.1021/jo005587e
  26. Castro, E. A.; Santos, J. G.; Tellez, J.; Umana, M. I. J. Org. Chem.1997, 62, 6568-6574. https://doi.org/10.1021/jo970624w
  27. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67,8995-8998. https://doi.org/10.1021/jo0264269
  28. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67,3874-3877. https://doi.org/10.1021/jo025637a
  29. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783-4789. https://doi.org/10.1021/jo990115p
  30. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12-15. https://doi.org/10.1021/jo990671j
  31. Buncel, E.; Wilson, H. Adv. Phys. Org. Chem. 1977, 14, 133-202. https://doi.org/10.1016/S0065-3160(08)60109-4
  32. Um, I. H.; Lee, E. J.; Jeon, S. E. J. Phys. Org. Chem. 2002, 15,561-565. https://doi.org/10.1002/poc.483
  33. Kolthoff, I. M.; Chantooni, M. K.; Bhowmilk, S. J. Am. Chem.Soc. 1968, 90, 23-28. https://doi.org/10.1021/ja01003a005
  34. Castro, E. A.; Cubillos, M.; Santos, J. G.; Tellez, J. J. Org. Chem.1997, 62, 2512-2517. https://doi.org/10.1021/jo961921o
  35. Castro, E. A.; Pizarro, M. I.; Santos, J. G. J. Org. Chem. 1996, 61,5982-5985. https://doi.org/10.1021/jo960781f
  36. Castro, E. A.; Ureta, C. J. Org. Chem. 1990, 55, 1676-1679. https://doi.org/10.1021/jo00292a051
  37. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1969; p 179.
  38. Bernasconi, C. F.; Kliner, D. A.; Mullin, A. S.; Ni, J. X. J. Org.Chem. 1988, 53, 3342-3351. https://doi.org/10.1021/jo00249a040
  39. Bernasconi, C. F.; Hibdon, S. A. J. Am. Chem. Soc. 1983, 105,4343-4348. https://doi.org/10.1021/ja00351a037
  40. Bernasconi, C. F.; Terrier, F. J. Am. Chem. Soc. 1987, 109, 7115-7121. https://doi.org/10.1021/ja00257a035
  41. Spencer, T. A.; Kendal, M. C. R.; Reingold, I. D. J. Am. Chem.Soc. 1972, 94, 1250-1254. https://doi.org/10.1021/ja00759a035
  42. Bernasconi, C. F.; Murray, C. J. J. Am. Chem. Soc. 1986, 108,5251-5257. https://doi.org/10.1021/ja00277a032
  43. Bernasconi, C. F.; Leyes, A. E.; Eventova, I.; Rappoport, Z. J. Am.Chem. Soc. 1995, 117, 1703-1711. https://doi.org/10.1021/ja00111a006

Cited by

  1. Substituent effects on the activation parameters of pyridine acylation with esters and thioesters in solution vol.49, pp.3, 2013, https://doi.org/10.1134/S1070428013030135
  2. Kinetics and mechanism of the reactions ofS-4-nitrophenyl 4-methylthiobenzoate with secondary alicyclic amines and pyridines vol.19, pp.8-9, 2006, https://doi.org/10.1002/poc.1055
  3. Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile vol.25, pp.2, 2003, https://doi.org/10.5012/bkcs.2004.25.2.203
  4. Kinetic Studies on the Structure-Reactivity of Aryl Dithiomethylacetates vol.25, pp.7, 2003, https://doi.org/10.5012/bkcs.2004.25.7.1041
  5. Kinetics and Mechanism of the Pyridinolysis of S-4-Nitrophenyl 4-Substituted Thiobenzoates in Aqueous Ethanol vol.69, pp.16, 2003, https://doi.org/10.1021/jo049260f
  6. Kinetics and Mechanism of the Reactions of S-2,4-Dinitrophenyl 4-Substituted Thiobenzoates with Secondary Alicyclic Amines vol.70, pp.19, 2005, https://doi.org/10.1021/jo051052f
  7. Kinetic and Theoretical Studies on the Mechanism of Intramolecular Catalysis in Phenyl Ester Hydrolysis vol.71, pp.20, 2003, https://doi.org/10.1021/jo061165e
  8. Pyridinolyses of 2,4-Dinitrophenyl Phenyl Carbonate and 2,4-Dinitrophenyl Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism vol.31, pp.7, 2003, https://doi.org/10.5012/bkcs.2010.31.7.1915