DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclopropanecarboxylates in Acetonitrile

  • Koh, Han-Joong (Department of Science Education, Chonju National University of Education) ;
  • Kang, Suk-Jin (Department of Science Education, Chonju National University of Education) ;
  • Kim, Cheol-Ju (Department of Chemistry, Chonbuk National University) ;
  • Lee, Hai-Whang (Department of Chemistry, Inha University) ;
  • Lee, Ik-Choon (Department of Chemistry, Inha University)
  • Published : 2003.07.20

Abstract

Kinetic studies of the reaction of Z-aryl cyclopropanecarboxylates with X-pyridines in acetonitrile at 55.0 ℃ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic tetrahedral intermediate, $T^{\pm}$. These mechanistic conclusions are drawn base on (i) the large magnitude of ρx and ρz, (ii) the positive sign of ρxz and the larger magnitude of ρxz than normal $S_N2$ processes, (iii) a small positive enthalpy of activation, Δ$H^≠$, and a large negative, Δ$S^≠$, and lastly (iv) adherence to the reactivity-selectivity principle (RSP) in all cases.

Keywords

References

  1. Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96,7018. https://doi.org/10.1021/ja00829a034
  2. Koh, H. J.; Lee, H. C.; Lee, H. W.; Lee, I. Bull. Korean Chem.Soc. 1995, 16, 839.
  3. Castro, E. A.; Valdivia, J. L. J. Org. Chem.1986, 51, 1668. https://doi.org/10.1021/jo00360a007
  4. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970. https://doi.org/10.1021/ja00463a033
  5. Bond, P. M.; Moodie, R. B. J. Chem. Soc., Perkin Trans. 21976, 679.
  6. Castro, E. A.; Gil, F. J. Am. Chem. Soc. 1977, 99,7611. https://doi.org/10.1021/ja00465a032
  7. Castro, E. A.; Freudenberg, M. J. Org. Chem. 1980, 45,906. https://doi.org/10.1021/jo01293a027
  8. Castro, E. A.; Ibanez, F.; Lagos, S.; Schick, M. ; Santos, J.G. J. Org. Chem. 1992, 57, 2691. https://doi.org/10.1021/jo00035a028
  9. Koh, H. J.; Shin, C. H.; Lee, H. W.; Lee, I. J. Chem. Soc., PerkinTrans. 2 1998, 1329.
  10. Lee, H. W.; Yun, Y. S.; Lee, B. S.; Koh, H. J.; Lee, I. J. Chem.Soc., Perkin Trans. 2 2000, 2032.
  11. Koh, H. J.; Han, K. L.;Lee, H. W.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23,715. https://doi.org/10.5012/bkcs.2002.23.5.715
  12. Page, M.; Williams, A. Organic and Bio-organic Mechanisms;Longman: Harlow, 1997, Ch. 2.
  13. Gresser, M. J.; Jencks, W. P. J.Am. Chem. Soc. 1997, 99, 6963. https://doi.org/10.1021/ja00463a032
  14. Palling, D. J.; Jencks, W. P. J.Am. Chem. Soc. 1984, 106, 4869. https://doi.org/10.1021/ja00329a040
  15. Castro, E. A.; Ureta, C. J.Org. Chem. 1990, 55, 1676. https://doi.org/10.1021/jo00292a051
  16. Lee, I.; Lee, D.; Kim, C. K. J. Phys. Chem. A 1997, 101, 879. https://doi.org/10.1021/jp961145o
  17. Koh, H. J.; Han, K. L.; Lee, I. J. Org. Chem. 1999, 64, 4783. https://doi.org/10.1021/jo990115p
  18. Castro, E. A.; Ureta, C. J. Chem. Soc. Perkin Trans. 2 1991,63.
  19. Koh, H. J.; Kim, S. I.; Lee, B. C.; Lee, I. J. Chem. Soc., PerkinTrans. 2 1996, 353.
  20. Kim, T. H.; Huh, C.; Lee, B. S.; Lee, I. J.Chem. Soc., Perkin Trans. 2. 1995, 2257.
  21. Koh, H. J.; Lee, J.W.; Lee, H. W.; Lee, I. Can. J. Chem. 1998, 76, 710. https://doi.org/10.1139/cjc-76-6-710
  22. Koh, H.J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905
  23. Koh, H. J.; Lee, J. W.; Lee, H. W.; Lee, I. New J. Chem. 1997,21, 447.
  24. Koh, H. J.; Kim, O. S.; Lee, H. W.; Lee, I. J. Phys.Org. Chem. 1997, 10, 725 https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<725::AID-POC943>3.0.CO;2-X
  25. Koh, H. J.; Kim, T. H.; Lee, B. S.;Lee, I. J. Chem. Res. 1996, (S) 482, (M) 2741.
  26. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  27. (b) Lee, I. Chem.Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
  28. Isaacs, N. S. Physical OrganicChemistry, 2nd ed.; Longman: Harlow, 1995, Ch. 4.
  29. Lee, I.;Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  30. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B.J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  31. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J.Chem. Soc., Perkin Trans. 2 1996, 2099.
  32. Reichardt, C. Solvent and Solvent Effects in Organic Chemistry,2nd ed.; VCH, Weinheim, 1988; Table A-1, p 408.
  33. Lee, I.; Choi, Y. H.; Lee, H. W.; Lee, B. S. J. Chem. Soc. PerkinTrans. 2 1988, 1537.
  34. Gilliom, R. D. Introduction to PhysicalOrganic Chemistry; Addison-Wesley: Reading, MA, 1970; p. 148.
  35. Jacobson, B. M.; Lewis, E. S. J. Org. Chem. 1988, 53, 446. https://doi.org/10.1021/jo00237a047
  36. Siggel, M. R. F.; Streitwieser, A., Jr.; Thomas, T. D. J. Am. Chem.Soc. 1988, 110, 8022. https://doi.org/10.1021/ja00232a011
  37. Lee, I.; Lee, B. S.; Koh, H. J.; Chang, B.D. Bull. Korean Chem. Soc. 1995, 16, 277.
  38. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824. https://doi.org/10.1021/ja00766a027
  39. Buncel, E.; Um, I. H. J. Chem. Soc., Chem. Commun. 1986,595.
  40. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989,111, 791.
  41. Kown, D. S.; Nahm, J. H.; Um, I. H. Bull. KoreanChem. Soc. 1994, 15, 654.
  42. Um, I. H.; Yoon, H. W.; Lee, J. S.;Moon, H. J.; Kown, D. S. J. Org. Chem. 1997, 62, 5939. https://doi.org/10.1021/jo970665s
  43. Um, I.H.; Hong, Y. J.; Lee, Y. J. Bull. Korean Chem. Soc. 1998, 19, 147.
  44. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem.2000, 65, 5659. https://doi.org/10.1021/jo000482x
  45. Um, I. H.; Kim, M. J.; Lee, H. W. Chem.Commun. 2000, 2165.
  46. Oh, H. K.; Jeong, J. Bull. Korean Chem.Soc. 2001, 22, 1123.
  47. Oh, H. K.; Woo, S. Y.; Oh, C. H.; Park, Y.S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  48. Oh, H. K.; Kim, S.K.; Cho, I. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2000, 2306.
  49. Castro, E. A.; Salas, M. J.; Santos, J. G. J. Org. Chem. 1994,59, 30. https://doi.org/10.1021/jo00080a008
  50. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem.1996, 61, 3501. https://doi.org/10.1021/jo951726u
  51. Lee, I. Bull. Korean Chem. Soc. 1994, 15, 985.
  52. Lee, D.;Kim, C. K.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 1203.
  53. Lee, I.; Lee, D.; Kim, C. K. J. Phys. Chem. A 1997, 101, 879. https://doi.org/10.1021/jp961145o
  54. Pross, A. Adv. Phys. Org. Chem. 1977, 14, 69. https://doi.org/10.1016/S0065-3160(08)60108-2
  55. Exner, D. J.Chem. Soc., Perkin Trans. 2 1993, 973.
  56. Buncel, E.; Wilson, H.J. Chem. Educ. 1987, 64, 475. https://doi.org/10.1021/ed064p475
  57. Neuvonen, H. J. Chem. Soc., Perkin Trans. 2 1995, 951.
  58. Castro, E. A.; Ibanez, F.; Salas, M.; Santos, J. G. J. Org. Chem.1991, 56, 4819. https://doi.org/10.1021/jo00016a002
  59. Song, B. D.; Jencks, W. P. J. Am. Chem. Soc.1989, 111, 8479. https://doi.org/10.1021/ja00204a022
  60. Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978;Ch. 10.

Cited by

  1. Enthalpy-entropy correlations in reactions of 2,4-dinitrophenyl benzoate with phenols in the presence of potassium hydrogen carbonate and with potassium phenoxides in dimethylformamide vol.47, pp.6, 2011, https://doi.org/10.1134/S1070428011060030
  2. Enthalpy-Entropy Correlations in Reactions of Aryl Benzoates with Potassium Aryloxides in Dimethylformamide vol.45, pp.4, 2013, https://doi.org/10.1002/kin.20763
  3. Substituent effects on the activation parameters of pyridine acylation with esters and thioesters in solution vol.49, pp.3, 2013, https://doi.org/10.1134/S1070428013030135
  4. Mild and Selective Activation and Substitution of Strong Aliphatic CF Bonds vol.21, pp.9, 2015, https://doi.org/10.1002/chem.201406097
  5. Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile vol.25, pp.2, 2003, https://doi.org/10.5012/bkcs.2004.25.2.203
  6. Kinetic Studies on the Structure-Reactivity of Aryl Dithiomethylacetates vol.25, pp.7, 2003, https://doi.org/10.5012/bkcs.2004.25.7.1041
  7. Effect of Changing Electrophilic Center from Carbonyl to Sulfonyl Group on Electrophilicity vol.26, pp.3, 2003, https://doi.org/10.5012/bkcs.2005.26.3.457
  8. Aminolysis of 2,4-Dinitrophenyl X-Substituted Benzoates and Y-Substituted Phenyl Benzoates in MeCN: Effect of the Reaction Medium on Rate and Mechanism vol.12, pp.4, 2003, https://doi.org/10.1002/chem.200500647
  9. DFT studies on the structure and stability of zwitterionic tetrahedral intermediate in the aminolysis of esters vol.426, pp.4, 2003, https://doi.org/10.1016/j.cplett.2006.06.015
  10. Effects of atom pairs O and S on the stability of zwitterionic tetrahedral intermediate: A theoretical study vol.432, pp.4, 2003, https://doi.org/10.1016/j.cplett.2006.11.002