DOI QR코드

DOI QR Code

Site-directed Mutagenesis of Tyrosine 108 Residue in Human Glutathione S-Transferase P1-1

  • Ahn, So-Youn (Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Jeon, Sang-Hoon (Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Park, Hee-Joong (Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Kong, Kwang-Hoon (Department of Chemistry, College of Sciences, Chung-Ang University)
  • Published : 2003.08.20

Abstract

In order to study the role of residue in the active site of glutathione S-transferase (GST), Tyr 108 residue in human GST P1-1 was replaced with alanine, phenylalanine and tryptophan by site-directed mutagenesis to obtain mutants Y108A, Y108F and Y108W. These three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitutions of Tyr108 significantly affected $K_m^{CDNB}$ and $K_m^{ETA}$, whereas scarcely affected $K_m^{GSH}$. The substitutions of Tyr108 also significantly affected $I_{50}$ of ETA, an electrophilic substrate-like compound. The effect of these substitutions on kinetic parameters and the response to inhibition suggests that tyrosine 108 in hGST P1-1 contributes to the binding of the electrophilic substrate and a major determinant in the binding of CDNB is the aromatic ring of Tyr108, not its hydroxyl group.

Keywords

References

  1. Mannervik, B. Adv. Enzymol. Rel. Areas Mol. Biol. 1985, 57, 357. https://doi.org/10.1002/9780470123034.ch5
  2. Mannervik, B.; Danielson, U. H. CRC Crit. Rev. Biochem. 1988,23, 283. https://doi.org/10.3109/10409238809088226
  3. Fahey, R. C.; Sundquist, A. R. Adv. Enzymol. Rel. Areas Mol. Biol.1991, 64, 1. https://doi.org/10.1002/9780470123102.ch1
  4. Mannervik, B.; Awasthi, Y. C.; Board, P. G.; Hayes, J. D.; Ilio, C.;Ketterer, B.; Listowsky, I.; Morgenstern, R.; Muramatsu, M.;Pearson, W. R.; Pickett, C. B.; Sato, K.; Widersten, M.; Wolf, C.R. Biochem. J. 1992, 282, 305.
  5. Caccuri, A. M.; Petruzzelli, R.; Polizio, F.; Federici, G.; Desideri,A. Arch. Biochem. Biophys. 1992, 297, 119. https://doi.org/10.1016/0003-9861(92)90648-G
  6. Desideri, A.; Caccuri, A. M.; Poligio, F.; Bastoni, R.; Federici, G.J. Biol. Chem. 1991, 266, 2063.
  7. Lo Bello, M.; Petruzzelli, R.; De Stefano, E.; Tenedini, C.; Barra,D.; Federici, G. FEBS Lett. 1990, 263, 389. https://doi.org/10.1016/0014-5793(90)81421-J
  8. Nishikawa, T.; Maeda, H.; Okamoto, K.; Oshida, T.; Mizoguchi,T.; Terada, T. Biochem. Biophys. Res. Commun. 1991, 174, 580. https://doi.org/10.1016/0006-291X(91)91456-M
  9. Tamai, K.; Satoh, K.; Tsuchida, S.; Hatayama, I.; Maki, T.; Sata,K. Biochem. Biophys. Res. Commun. 1990, 167, 331. https://doi.org/10.1016/0006-291X(90)91769-O
  10. Chen, W.-L.; Haieh, J.-C.; Hong, J.-L.; Tsai, S.-P.; Tam, M. F.Biochem. J. 1992, 286, 205.
  11. Haieh, J.-C.; Huang, S.-C.; Chen, W.-L.; Lai, Y.-C.; Tam, M. F.Biochem. J. 1991, 278, 293.
  12. Kong, K.-H.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res.Commun. 1991, 181, 748. https://doi.org/10.1016/0006-291X(91)91254-A
  13. Kong, K.-H.; Nishida, M.; Inoue, H.; Takahashi, K. Biochem.Biophys. Res. Commun. 1992, 182, 1122. https://doi.org/10.1016/0006-291X(92)91848-K
  14. Kong, K.-H.; Takasu, K.; Inoue, H.; Takahashi, K. Biochem.Biophys. Res. Commun. 1992, 184, 194. https://doi.org/10.1016/0006-291X(92)91177-R
  15. Kong, K.-H.; Inoue, H.; Takahashi, K. Protein Engineering 1993,6, 93. https://doi.org/10.1093/protein/6.1.93
  16. Park, H.-J.; Lee, K.-S.; Cho, S.-H.; Kong, K.-H. Bull. KoreanChem. Soc. 2001, 22, 77.
  17. Ji, X.; Zhang, P.; Armstrong, R. N.; Gilliland, G. L. Biochemistry1992, 31, 10169. https://doi.org/10.1021/bi00157a004
  18. Ji, X.; Von Rosenvinge, E. C.; Johnson, W. W.; Tomarev, S. I.;Piatigorsky, J.; Armstrong, R. N.; Gilliland, G. L. Biochemistry1995, 34, 5317. https://doi.org/10.1021/bi00016a003
  19. Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Schäffer, J.; Gallay, O.;Huber, R. EMBO J. 1991, 10, 1997.
  20. Sinning, I.; Kleywegt, G. J.; Cowan, S. W.; Reinemer, P.; Dirr, H.W.; Huber, R.; Gilliland, G. L.; Armstrong, R. N.; Ji, X.; Board, P.G.; Olin, B.; Mannervik, B.; Jones, T. A. J. Mol. Biol. 1993, 232,192. https://doi.org/10.1006/jmbi.1993.1376
  21. Wilce, M. C. J.; Board, P. G.; Feil, S. C.; Parker, M. W. EMBO J.1995, 14, 2133.
  22. Barycki, J. J.; Colman, R. F. Biochemistry 1993, 32, 13002. https://doi.org/10.1021/bi00211a008
  23. Pettigrew, N. E.; Moyer-Myers, M.; Colman, R. F. Arch. Biochem.Biophys. 1999, 364, 107. https://doi.org/10.1006/abbi.1999.1126
  24. Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Huber, R. J. Mol. Biol.1992, 217, 214.
  25. Johnson, W. W.; Liu, S.; Ji, X.; Gilliland, G. L.; Armstrong, R. N.J. Biol. Chem. 1993, 268, 11508.
  26. Ji, X.; Johnson, W. W.; Sesay, M. A.; Dickert, L.; Prasad, S. M.; Ammon, H. L.; Armstrong, R. N.; Gilliland, G. L. Biochemistry1994, 33, 1043. https://doi.org/10.1021/bi00171a002
  27. Widersten, M.; Björnestedt, R.; Mannervik, B. Biochemistry 1994,33, 11717. https://doi.org/10.1021/bi00205a007
  28. Zimniak, P.; Nanduri, B.; Pikula, S.; Bandorowicz-Pikula, J.;Singhal, S. S.; Srivastava, S. K.; Awasthi, S.; Awasthi, Y. C. Eur. J.Biochem. 1994, 224, 893. https://doi.org/10.1111/j.1432-1033.1994.00893.x
  29. Bammler, T.; Driessen, H.; Finnstrom, N.; Wolf, C. R.Biochemistry 1995, 34, 9000. https://doi.org/10.1021/bi00028a008
  30. Kano, T.; Sakai, M.; Muramatsu, M. Cancer Res. 1987, 47, 5626.
  31. Kunkel, T. A. Proc. Natl. Acad. Sci. USA 1985, 82, 488. https://doi.org/10.1073/pnas.82.2.488
  32. Parker, M. W.; Bello, M. L.; Federici, G. J. Mol. Biol. 1990, 213,221. https://doi.org/10.1016/S0022-2836(05)80183-4
  33. Habig, W. H.; Jakoby, W. B. Methods Enzymol. 1981, 77, 398. https://doi.org/10.1016/S0076-6879(81)77053-8
  34. Laemmli, U. K. Nature 1979, 227, 680. https://doi.org/10.1038/227680a0
  35. Morgan, A. S.; Ciaccio, P. J.; Tew, K. D.; Kauvar, L. M. CancerChemother. Pharmacol. 1996, 37, 363. https://doi.org/10.1007/s002800050398
  36. Tsuchida, S.; Sato, K. CRC Crit. Rev. Biochem. Mol. Biol. 1992,27, 337. https://doi.org/10.3109/10409239209082566
  37. Oakley, A. J.; Rossjohn, J.; Bello, M. L.; Caccuri, A. M.; Federici,G.; Paker, M. W. Biochemistry 1997, 36, 576. https://doi.org/10.1021/bi962316i

Cited by

  1. -Transferase Pi Has at Least Three Distinguishable Xenobiotic Substrate Sites Close to Its Glutathione-binding Site vol.279, pp.48, 2004, https://doi.org/10.1074/jbc.M407445200
  2. In vitro Interaction of Recombinantly Expressed Kringle 5 (rK5) with Ras Guanine Nucleotide Dissociation Stimulator-like Factor (Rgl2) vol.25, pp.12, 2003, https://doi.org/10.5012/bkcs.2004.25.12.1863
  3. Modification and Inactivation of Human Ceruloplasmin by Oxidized DOPA vol.25, pp.5, 2003, https://doi.org/10.5012/bkcs.2004.25.5.625
  4. Functional Studies of Tyrosine 108 Residue in the Active Site of Human Glutathione S-Transferase P1-1 vol.26, pp.3, 2003, https://doi.org/10.5012/bkcs.2005.26.3.433
  5. Direct Evidence for the Formation of a Complex between 1-Cysteine Peroxiredoxin and Glutathione S-Transferase &pgr; with Activity Changes in Both Enzymes vol.45, pp.2, 2003, https://doi.org/10.1021/bi0520737