DOI QR코드

DOI QR Code

Molecular Modeling of the Chiral Recognition of Propranolol Enantiomers by a β-Cyclodextrin

  • Kim, Hyun-myung (Department of Microbial Engineering and Bio/Molecular Informatics Center, Konkuk University) ;
  • Jeong, Karp-joo (College of Information and Communication,Konkuk University) ;
  • Lee, Sang-san (Supercomputing Center in Korea Institute of Science and Technology Information) ;
  • Jung, Seun-ho (Department of Microbial Engineering and Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2003.01.20

Abstract

Enantioselectivity of the propranolol on β-cyclodextrin was simulated by molecular modeling. Monte Carlo (MC) docking and molecular dynamics (MD) simulations were applied to investigate the molecular mechanism of enantioselective difference of both enantiomeric complexes. An energetic analysis of MC docking simulations coupled to the MD simulations successfully explains the experimental elution order of propranolol enantiomers. Molecular dynamics simulations indicate that average energy difference between the enantiomeric complexes, frequently used as a measure of chiral recognition, depends on the length of the simulation time. We found that, only in case of much longer MD simulations, noticeable chiral separation was observed.

Keywords

References

  1. Armstrong, D. W.; Ward, T. J.; Armstrong, R. D.; Beesley, T. E.Science 1986, 232, 1132. https://doi.org/10.1126/science.3704640
  2. Potter, L. T. J. Pharmacol. Exp. Ther. 1967, 155, 91.
  3. Walle, T.; Walle, U. K.; Wilson, M. J.; Fagan, T. C.; Gafney, T. E.Br. J. Clin. Pharmacol. 1984, 18, 741. https://doi.org/10.1111/j.1365-2125.1984.tb02537.x
  4. Rahn, K. H.; Hawlina, A.; Kersting, F.; Planz, G. Naunyn¯Schmiedeberg's Arch. Pharmacol. 1974, 286, 319. https://doi.org/10.1007/BF00498314
  5. Howe, R.; Shanks, R. G. Nature 1966, 210, 1336. https://doi.org/10.1038/2101336a0
  6. Redondo, J.; Blazquez, M. A.; Torrens, A. Chirality 1999, 11, 694. https://doi.org/10.1002/(SICI)1520-636X(1999)11:9<694::AID-CHIR5>3.0.CO;2-W
  7. Hamilton, J. A.; Chen, L. J. Am. Chem. Soc. 1988, 110, 5833. https://doi.org/10.1021/ja00225a039
  8. Berthod, A.; Jin, H. L.; Beesley, T. E.; Duncan, J. D.; Armstrong,D. W. J. Pharm. Biomed. Anal. 1990, 8, 123. https://doi.org/10.1016/0731-7085(90)80018-K
  9. Dauber-Osguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff,J.; Genest, M.; Hagler, A. T. Proteins 1988, 4, 31. https://doi.org/10.1002/prot.340040106
  10. Betzel, C.; Saenger, W.; Hingerty, B. E.; Brown, G. M. J. Am.Chem. Soc. 1984, 106, 7545. https://doi.org/10.1021/ja00336a039
  11. Choi, Y.; Kang, S.; Yang, C.-H.; Kim, H.-W.; Jung. S. Bull.Korean Chem. Soc. 1999, 20, 753.
  12. Choi, Y.; Yang, C.-H.; Kim, H.-W.; Jung, S. Carbohydr. Res.2000, 326, 227. https://doi.org/10.1016/S0008-6215(00)00050-1
  13. Chio, Y.; Yang, C.-H.; Kim, H.-W.; Jung, S. Carbohydr. Res.2000, 328, 393. https://doi.org/10.1016/S0008-6215(00)00101-4
  14. Hart, T. N.; Read, R. J. Proteins 1992, 13, 206. https://doi.org/10.1002/prot.340130304
  15. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.H.; Teller, E. J. Chem. Phys. 1953, 21, 1087. https://doi.org/10.1063/1.1699114
  16. Chio, Y.; Yang, C.-H.; Kim, H.-W.; Jung, S. J. Incl. Phenom.2001, 39, 71. https://doi.org/10.1023/A:1008196029391
  17. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.;DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684. https://doi.org/10.1063/1.448118
  18. Luty, B. A.; Wasserman, Z. R.; Stouten, P. F. W.; Hodge, C. N.;Zacharias, M.; McCammon, J. A. J. Comp. Chem. 1995, 16, 454. https://doi.org/10.1002/jcc.540160409
  19. Kim, H.; Choi, J.; Kim, H.-W.; Jung, S. Carbohydr. Res. 2002,337, 549. https://doi.org/10.1016/S0008-6215(02)00015-0
  20. Black, D. R.; Parker, C. G.; Zimmerman, S. S.; Lee, M. L. J.Comp. Chem. 1996, 17, 931. https://doi.org/10.1002/(SICI)1096-987X(199606)17:8<931::AID-JCC2>3.0.CO;2-S
  21. Pham-Huy, C.; Radenen, B.; Sahui-Gnassi, A.; Claude, J. J.Chromatogr. B 1995, 665, 125. https://doi.org/10.1016/0378-4347(94)00511-3
  22. Dodziuk, H.; Ejchart, A.; Lukin, O.; Vysotsky, M. O. J. Org.Chem 1999, 61, 1503.
  23. Lipkowitz, K. B.; Stoehr, C. M. Chirality 1996, 8, 341. https://doi.org/10.1002/(SICI)1520-636X(1996)8:4<341::AID-CHIR8>3.0.CO;2-I
  24. Dodziuk, H.; Lukin, O. Chem. Phys. Lett. 2000, 327, 18. https://doi.org/10.1016/S0009-2614(00)00831-9
  25. Ramirez, J.; Ahn, S.; Grigorean, G.; Lebrilla, C. B. J. Am. Chem.Soc. 2000, 122, 6884. https://doi.org/10.1021/ja000717m

Cited by

  1. Molecular Modeling of Enantioseparation of Phenylazetidin Derivatives by Cyclodextrins vol.71, pp.S1, 2010, https://doi.org/10.1365/s10337-009-1461-9
  2. Chiral Recognition of Propranolol with β-Cyclodextrin in the Presence of 1- and 2-Butanol vol.51, pp.1-2, 2005, https://doi.org/10.1007/s10847-004-5690-0
  3. Development of a Gesture-Based Molecular Visualization Tool Based on Virtual Reality for Molecular Docking vol.25, pp.10, 2003, https://doi.org/10.5012/bkcs.2004.25.10.1571
  4. NMR Spectroscopic Analysis on the Chiral Recognition of Noradrenaline by β-Cyclodextrin ( β-CD) and Carboxymethyl- β-cyclodextrin (CM- β-CD) vol.25, pp.2, 2004, https://doi.org/10.5012/bkcs.2004.25.2.216
  5. Prediction of Chiral Discrimination by β-Cyclodextrins Using Grid-based Monte Carlo Docking Simulations vol.26, pp.5, 2003, https://doi.org/10.5012/bkcs.2005.26.5.769
  6. Recent advances in the electrochemistry of ion transfer processes at liquid–liquid interfaces vol.102, pp.None, 2003, https://doi.org/10.1039/b417141c
  7. A Simulation on the Complexation of Cyclodextrins with Phospholipid Headgroups vol.56, pp.1, 2006, https://doi.org/10.1007/s10847-006-9088-z
  8. Separation of Madecassoside and Madecassic Acid Isomers by High Performance Liquid Chromatography Using β -Cyclodextrin as Mobile Phase Additive vol.29, pp.3, 2003, https://doi.org/10.5012/bkcs.2008.29.3.551
  9. Behavioural and physiological responses to ­pharmaceutical exposure in macroalgae and ­grazers from a Baltic Sea littoral community vol.14, pp.1, 2003, https://doi.org/10.3354/ab00380