Genetic variation in pure lines of Panax ginseng based on by RAPD analysis

RAPD를 이용한 고려인삼 육성계통의 유전적 다양성 분석

  • Kim, Jin-Hee (College of Agric. & Life Sciences, Div. of Plant Resources, Chungnam National University) ;
  • Yuk, Jin-Ah (College of Agric. & Life Sciences, Div. of Plant Resources, Chungnam National University) ;
  • Cha, Sun-Kyung (College of Agric. & Life Sciences, Div. of Plant Resources, Chungnam National University) ;
  • Kim, Hyun-Ho (Kumsan Agricultural Development & Technology Center) ;
  • Seong, Bong-Jae (Kumsan Agricultural Development & Technology Center) ;
  • Kim, Sun-Ick (Kumsan Agricultural Development & Technology Center) ;
  • Choi, Jae-Eul (College of Agric. & Life Sciences, Div. of Plant Resources, Chungnam National University)
  • 김진희 (충남대학교 농업생명과학대학 식물자원학부) ;
  • 육진아 (충남대학교 농업생명과학대학 식물자원학부) ;
  • 차선경 (충남대학교 농업생명과학대학 식물자원학부) ;
  • 김현호 (금산군농업기술센터) ;
  • 성봉재 (금산군농업기술센터) ;
  • 김선익 (금산군농업기술센터) ;
  • 최재을 (충남대학교 농업생명과학대학 식물자원학부)
  • Published : 2003.06.30

Abstract

This experiment was conducted to evaluate the diversity and purity of the Korean ginseng (Panax gjnseng) lines developed by the pure line selection using RAPD markers. Four primer (OPA 19, OPM 11, URP 3 and UBC 98) out of the 48 primer tested produced band which showed within-line polymorphisms at least in one line. Within-line polymorphisms were detected in six lines by OPA 19, in four lines by URP 03, in five lines by OPM 11, and in one line by UBC 98 respectively. Five plants obtained from the commercial cultivar 'Cheonpung' were differentiated using the primers OPA 19 and OPM 11. Five plants obtained from the 'Yeonpung were differentiated using the primer OPM 11. Detection of within-line RAPD polymorphisms might be attributed to the fact that cross pollination appear in P. gjnseng and a long period of three to four years required to reach the reproductive stage thereby delay the process to homozygosity.

본 연구는 금산농업기술센터 인삼연구실에서 순계선발법으로 육성 중인 인삼 계통과 인삼연초연구원에서 육성한 품종을 RAPD 방법으로 계통 내의 변이와 육성계통의 순도를 검정하여 인삼의 순계선발법으로 활용하기 위한 기초자료를 얻기 위해 실시하여 얻은 결과를 요약하면 다음과 같다. 1. 10개 계통으로부터 각각 $4{\sim}5$개 개체를 임의로 수확한 49개체의 DNA를 48개의 primer를 사용하여 PCR한 결과 최소한 1개의 계통 내에서 RAPD다형성을 나타내는 4개의 primer OPA 19, OPM 11, URP 3 및 UBC 98을 선발하였다. 그중 Primer OPA 19, OPM 11 및 UBC 98은 각각 6계통, 7계통 및 1계통 내에서 개체간의 차이를 보이는 band가 증폭되었다. 2. 육성품종 천풍의 DNA를 OPA 19를 사용하여 증폭한 결과 약 1,800bp 크기의 band에서 개체간의 차이를 보였고, OPM 11을 사용하여 증폭한 경우에는 약 730bp 및 850bp 크기의 두 band에서 개체간의 차이를 나타냈으며, 육성품종 연풍은 OPM 11을 사용하여 증폭한 결과 약 730bp 크기의 band에서 개체간의 차이를 보였다. 3. 이와 같이 인삼육성계통내의 개체 간에 RAPD 다형성이 나타나는 이유는 영년작물인 인삼이 타가수정 되면 유전적으로 고정이 되는데 필요한 기간이 길어지기 때문이라고 설명할 수 있다.

Keywords

References

  1. Ahn SD, Choi KT, Cheon SY, Chung CM, Kwon WS (1985) Coefficient of variability of Agronomic characters in Panax ginseng C. A. Meyer. Korean J. Ginseng Sci. 6: 9- 14
  2. Bai D, Brandle J, Reeleder R (1997) Genetic diversity in North American ginseng (Panax quinqueiolius L.) grow in Ontario detected by RAPD analysis. Genome 40: 111-115 https://doi.org/10.1139/g97-015
  3. Carpenter SG, Cottam G (1982) Growth and reproduction of American ginseng (Panax quinquefolius) in Wisconsin, U. S. A. Can. J. Bot. 60: 2692-2696 https://doi.org/10.1139/b82-328
  4. Doyle JJ, Doyle JL, Brown AHD (1990) A chloroplast-DNA phlogy of the wild perennial relatives of soybean (Glycine subgenus Glycine) congruence with morphological and crossing groups. Evolution 44: 371-389 https://doi.org/10.2307/2409415
  5. Lewis WH, Zenger V (1983) Breeding systems and fecundity in the American ginseng, Panax quinqueiolium (Araliaceae). Am. J. Bot. 703:466-468
  6. Lim YP, Shin CS, Lee SJ, Youn YN, Jo JS (1993) Survey of proper primers and Genetic Analysis of Korean ginseng(Panax ginseng C. A. Meyer) variants using the RAPD technique. Korean J. Ginseng Sci. 17: 153-158
  7. McCouch SR, Kochert YZH, Wang ZY, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor. Appl, Genet. 76: 815-829 https://doi.org/10.1007/BF00273666
  8. Michelmore RW, Paran, Kesseli RV (1991) A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Nat'l Acad. Sci. USA. 88: 9828-9832 https://doi.org/10.1073/pnas.88.21.9828
  9. Morgan MT, Sehoen DJ, Bataillon TM (1997) The evolution of selfferti1ization in perennials. AM. Nat. 150: 618-638 https://doi.org/10.1086/286085
  10. Oelzel AR, Green A (1992) Analysis of population level variation by sequencing PCR amplified DNA. In: Molecular genetic analysis of populations. A practical approach: 159-187
  11. Rawland LJ, Levi A (1994) RAPD based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinum darrowi and v. elliottii), Theor. Appl, Genet. 87: 863-868
  12. Schluter C, Punja ZK (2000) Floral biology and seed production in cultivated North American ginseng (Panax quinquefolius L.) in Canada. Int. J. Plant. Sci. 163: 427-439 https://doi.org/10.1086/339512
  13. Schluter C, Punja ZK (2002) Genetic diversity among natural and cultivated field populations and seed lots of American ginseng (Panax quinquetolius L.). J. Am. Soc. Hotic. Sci. 125: 567-575
  14. Song YS, Tsukasa NE, Choi IH, Jang YS, Choi WY, Park JH (2001) Detection of Randomly Amplified polymorphic DNA(RAPD) markers related to blotting, bulb color and clove adherent type of garlic(Allium sativum L.). J. Kor. Soc. Hort, Sci. 42: 305-309
  15. Yu LW, Nguyen HT (1993) Genetic variation detected with RAPD marker among upland and lowland rice cu1tivars (Oriza sativa L .) .Theor. Appl. Genet. 87: 668-672
  16. Zhu T, Shi L, Doyle JJ, Keirn P. (1995) A single nuclear locus phyogeny of soybean based on DNAsequence. Ther. Appl. Genet. so; 991-999