Anti-hepatotoxic Activity of Chrysanthemum coronarium L. var. spatiosum Extract

쑥갓의 간독성 보호작용

  • Kang, Hyun-Jung (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Lee, Eun-Ju (College of Pharmacy, Seoul National University) ;
  • Sung, Sang-Hyun (College of Pharmacy, Seoul National University) ;
  • Kim, Young-Choong (College of Pharmacy, Seoul National University) ;
  • Song, Eun-Sook (Department of Life Science, Sookmyung Women's University) ;
  • Park, Mi-Jung (Department of Visual Optics, Seoul National University of Technology) ;
  • Lee, Heum-Sook (Department of Food Science and Technology, Seoul National University of Technology)
  • 강현정 (서울산업대학교 식품공학과) ;
  • 이은주 (서울대학교 약학대학) ;
  • 성상현 (서울대학교 약학대학) ;
  • 김영중 (서울대학교 약학대학) ;
  • 송은숙 (숙명여자대학교 생명과학과) ;
  • 박미정 (서울산업대학교 안경광학과) ;
  • 이흠숙 (서울산업대학교 식품공학과)
  • Published : 2003.02.01

Abstract

Total methanolic extract of Chrysanthemum coronarium L. var. spatiosum (Compositae) was revealed to have anti-hepatotoxic activity against galactosamine-induced toxicity on primary cultured rat hepatocytes. After successive partitioning with chloroform, n-butanol, and water, the chloroform fraction showed a significant inhibition activity of 51% at 50 ppm, compared with that of silybin, 45.9% at $100\;{\mu}M$. The chloroform fraction was subjected to silica gel column chromatography and yielded active CH-II, CH-V and CH-VI subfractions, and the anti-hepatotoxic activity of these subfractions were 47.6, 56.3, and 23.2%, respectively, at 50 ppm. Total glutathione contents of CH-II, CH-V, and CH-VI increased by 49.8, 43.9, and 47.5% of the control, respectively at 50 ppm, whereas that of silymarin was, 59.7% at $100\;{\mu}M$ after challenged with galactosamine. The ratio of (reduced glutathione) / (total glutathione) in CH-II, CH-V and CH-VI subfraction showed similar values of $0.86{\sim}0.87$ at 50 ppm, whereas that of silymarin was, 0.85 at $100\;{\mu}M$. The incorporation of $[^3H]-uridine$ uptake into RNA was not affected by these active subfractions.

쑥갓의 total methanol 추출물이 galactosamine으로 독성을 유발시킨 흰쥐의 일차배양 간세포에서 유리되는 GPT의 활성을 유의성 있게 감소시켜 간세포 보호활성을 보임을 알 수 있었다. Total methanol 추출물을 다시 $CHCl_3$, n-buthanol, $H_2O$ 분획으로 나누어 galactosamine 독성에 의한 간세포 보호작용을 재검색한 결과, 50 ppm의 농도에서 간세포 보호작용을 가지는 대조약물 silybin의 41.3% 보호효과에 비하여 각각 51.2%, 10.6%, 23.1%의 보호활성을 나타내었다. 이 중 가장 활성이 큰 $CHCl_3$, 분획을 가지고 활성의 추적 분리 방법으로 소분획 CH-II, V, VI의 활성 subfraction을 얻고 이를 다시 TLC와 활성검색을 병용하여 CH-(V+VI)-d, -e, -j의 sub-subfraction을 얻을 수 있었으며 이들은 50 ppm의 농도에서 각각 41.3%, 51.3%, 47.3%의 보호활성을 보였다. 활성 소분획 CH-II, V, VI는 모두 $[^3H]-uridine$ uptake 시험을 통한 RNA 생합성에는 영향을 미치지 않았으나 total GSH 값은 간세포 보호약물인 silymarin 대조구 $100\;{\mu}M$ 농도에서의 59.7% 수준의 회복효과에 비하여 각각 49.8%, 43.9%, 47.5%의 회복효과를 보였다. 또한 (reduced GSH)/(total GSH) 값도 silymarin $100\;{\mu}M$에서의 0.850에 비하여 각각 0.871, 0.863, 0.872로 유사한 수치를 타나내었다. 이 연구결과로 쑥갓의 간세포 보호작용을 처음으로 검색, 확인하였으며 컬럼 크로마토그래피를 이용하여 활성이 있는$CHCl_3$ 소분획을 분리하였으므로 이들 소분획으로 부터 더욱 활성물질을 순수분리하여 그 구조를 밝히고 간세포 보호활성의 기전에 대하여도 다양한 방향의 연구가 수행되어야 할 것이다.

Keywords

References

  1. Huang, M.T., Ferraro, T. and Ho, C.T. Cancer chemoprevention by phytochemicals in fruits and vegetables, pp. 2-14. In: Food Phytochemicals for Cancer Prevention I. Huang, M.T., Osawa, T., Ho, C.T. and Roson, R.T. (eds.). American Chemical Society, USA (1994)
  2. Andre, G. and Christiane, G. Research in Isolated and Cultured Hepatocytes, p. 314. Elsevier, New York, USA (1986)
  3. Freshney, R.l. Manual of basic technique, p.l. In: Culture of Animals. Alan, R. (eds.). Liss Inc., New York, USA (1984)
  4. Kiso, Y., Tohkin, M. and Hikino, H. Assay method for anti-hepatotoxic activity using galactosamine induced cytotoxicity in primary cultured hepatocytes. J. Nat. Prod. 46: 651-654 (1983) https://doi.org/10.1021/np50029a010
  5. Kiso, Y., Tohkin, M. and Hikino, H. Assay method for anti-hepatotoxic activity using carbon tetrachloride induced cytotoxicity in primary cultured hepatocytes. Plant. Med. 49: 222-225 (1983) https://doi.org/10.1055/s-2007-969855
  6. Lee, C.B. Illustrated Flora of Korea, p. 753. Hyangmoonsa, Seoul (1982)
  7. Jang, D.S., Nam, S.H., Choi, S.U. and Jang, M.S. Antibacterial activity of some Chrysanthemum spp. Agric. Chem. Biotechnol. 39(4): 315-319 (1996)
  8. Jang, D.S., Park, K.H., Kim, H.M., Hong, D.H., Chun, H.K., Kho, Y.H. and Yang, M. S. Biological activities of sesquiterpene lactones isolated from several Compositae plants. Part I. Cytotoxicity against cancer cell lines. Kor. J. Pharmacogn. 29: 243-247 (1998)
  9. Berry, M.N. and Friend, D.S. High-yield preparation of isolated rat liver parenchymal cell. J. Cell Biol. 43: 506-520 (1969) https://doi.org/10.1083/jcb.43.3.506
  10. Kleiman, H.K., Mcgoodwin, E.B., Rennard, S.L and Martin, G.R. Preparation of collagen substrates for cell attachment.; Effect of collagen concentration and phosphate buffer. Anal. Biochem. 94: 308-312 (1979) https://doi.org/10.1016/0003-2697(79)90365-8
  11. Reitman, S. and Frankel. S.A. Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transminase. Am. J. Clin. Pathal. 28: 56-63 (1957)
  12. Karner, A. Regulation of the rate of synthesis of messenger ribonucleic acid by growth hormone. Biochem. J. 92: 449-457 (1964)
  13. Gibson, G.G. and Skelf, P. Techniques and experiments illustrating drug metabolism, pp. 239-271. In: Introduction to Drug Metabolism. Gibson, G.G. and Skelf, P. (eds.). Chapman and Hall, New York, USA (1988)
  14. Hissin, P.J. and Hill, R. A fluorometric method of determination of oxidized and reduced glutathione on tissue. Anal. Biochem. 74: 214-226 (1976) https://doi.org/10.1016/0003-2697(76)90326-2
  15. Slipes, I.G., Kroshna., G. and Gillett, J.R. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane. Life Sci. 20: 1541-1548 (1977) https://doi.org/10.1016/0024-3205(77)90446-5
  16. Groot, H. and Noll, T. The crucial role of low steady oxygen partial pressures in haloalkane free-radical mediated lipid peroxidation. Biochem. Pharmacol. 35: 15-26 (1986) https://doi.org/10.1016/0006-2952(86)90546-0
  17. McCord, J.M. and Fridovich, J. Superoxide dismutase. J. Biol. Chem. 244: 6049-6055 (1969)
  18. Ohkawa, Y., Ohisi, N. and Yagi, K. Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  19. Habig, W. H., Pabst, M. J. and Jakoby, W. B. Glutathione Stransferases. J. Biol. Chem. 249: 7130-7135 (1974)
  20. McMillan, J.M. and Jollow, D.J. Galactosamine hepatotoxicity; Effect of galactosamine on glutathione resynthesis in rat primary hepatocyte cultures. Toxicol. Appl. Pharmacol. 115: 234-240 (1992) https://doi.org/10.1016/0041-008X(92)90328-P