The Relationship between Serum Adiponectin, Essential Hypertension, LV Mass Index, and LV Diastolic Function

혈중 Adiponectin과 본태성 고혈압, 좌심실 비대 및 이완 장애의 연관성

Hong, Soon-Jun;Park, Chang-Gyu;Park, Jae-Suk;Ahn, Jeong-Cheon;Shin, Sung-Hee;Park, Sung-Mi;Lim, Hong-Euy;Kim, Eung-Joo;Seo, Hong-Seok;Oh, Dong-Joo;Ro, Young-Moo;Jang, Yang-Soo
홍순준;박창규;박재석;안정천;신성희;박성미;임홍의;김응주;서홍석;오동주;노영무;장양수

  • Published : 20031200

Abstract

Background and Objectives : Adiponectin is known for its anti-inflammatory and anti-atherogenic effects. The purpose of this study is to characterize the relationships among serum adiponectin, essential hypertension (EH), left ventricular mass index (LVMI), and LV diastolic function. Subjects and Methods : Serum adiponectin by RIA and body mass index were measured in 275 patients (M : F=137 : 138). We calculated LVMI, E/A ratio, deceleration time (DT), and isovolumetric relaxation time (IVRT) by using echocardiograms. Results : The serum adiponectin level of the hypertensive group was significantly lower than that of the non-hypertensive group (9.9${\pm}$9.8 ug/mL vs. 12.9${\pm}$9.5 ug/mL, p<0.05). Plasma adiponectin was negatively correlated with LVMI (r=-0.329, p<0.001), BMI (r=-0.290, p<0.001), and IVRT (r=-0.485, p<0.05), but was positively correlated with E/A (r=+0.359, p<0.001). Conclusion : These results suggest that a decrease in serum adiponectin is associated with an increase in blood pressure and BMI, progress of LVH, and decrease in LV diastolic function.

배경 및 목적 : 최근에 인체 지방조직에서 adiponectin이라는 새로운 단백질을 발견하게 되었으며, adiponectin이 좌심실 비대와 이완 장애에 미치는 영향에 대한 연구는 전무한 실정이다. 본 연구의 목적은 혈중 adiponectin과 본태성 고혈압과의 관계를 알아보고, 좌심실 비대 및 이완 장애와 혈중 adioponectin의 연관성을 알아보고자 하였다. 방 법 : 고려대 구로병원에 내원한 275명의 환자(남 : 여=137 : 138)를 대상으로 하였고, 평균 연령은 56.7${\pm}$ 12.3세(20${\sim}$87세)였다. 좌심실 질량(left ventricular mass)의 경우 Devereux's formula를 이용하여 측정하였으며, 좌심실 질량 지수(left ventricular mass index : LVMI)의 경우 좌심실 질량을 체표면적으로 나눠서 구하였다. 좌심실 이완기능은 E/A, DT, IVRT로 평가하였으며, 혈중 adiponectin 수치는 RIA kit(The LINCO Research, Inc.,Missouri, USA)를 이용하여 측정하였다. 결 과 : 고혈압군에서 혈중 adiponectin이 9.9${\pm}$9.8 ug/mL로 비고혈압군의 12.9${\pm}$9.5 ug/mL에 비해 유의하게 낮은 수치를 보여주었다(p<0.05). 고혈압군에서 좌심실 질량 지수(LVMI)가 117.3${\pm}$35.4 g으로 비고혈압군의 97.0${\pm}$18.7g보다 유의하게 높은 수치를 보였다. 심장의 이완 장애를 시사하는 E/A ratio의 경우 고혈압군에서 유의하게 낮았다(p<0.05). 혈중 adiponectin과 좌심실 질량 지수(LVMI)사이에는 역상관 관계(r=-0.329, p<0.001)가 있었고, 균등용적 이완 시간(IVRT)과도 뚜렷한 역상관 관계(r=-0.485, p<0.05)를 보였다. 다변량 선형회귀분석에서도 좌심실 질량 지수(LVMI)($\beta$= -0.285, p<0.05)는 혈중 adiponectin수치와 유의한 역상관 관계를 보였다. 결 론 : 혈중 adiponectin이 감소할수록 좌심실 비대가 심해지며, 혈중 adiponectin은 혈압과의 역상관 관계를 나타냈다. 따라서 본 연구는 고혈압 환자에서 혈중 adiponectin의 감소는 좌심실 비대 및 이완 장애와 연관이 있어 심혈관질환의 위험인자로 작용할 가능성을 시사하며 혈중 adiponectin 수치가 낮을 경우 심혈관질환의 예방을 위해 보다 적극적인 혈압 조절의 필요성을 제시하고 있다.

Keywords

References

  1. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003;148:293-300. https://doi.org/10.1530/eje.0.1480293
  2. Mantzoros CS. The role of leptin in human obesity and disease: a review of current evidence. Ann Intern Med 1999;130:671-80. https://doi.org/10.7326/0003-4819-130-8-199904200-00014
  3. Murray I, Sniderman AD, Havel PJ, Cianflone K. Acylation stimulating protein (ASP) deficiency alters postprandial and adipose tissue metabolism in male mice. J Biol Chem 1999;274:36219-25. https://doi.org/10.1074/jbc.274.51.36219
  4. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:87-91. https://doi.org/10.1126/science.7678183
  5. Park HS, Kim YS, Min WK, Lee CW, Park SW, Park SJ. A case-control study on the risk factors for coronary artery disease among Korean. Korean Circ J 1998;28:849-62. https://doi.org/10.4070/kcj.1998.28.6.849
  6. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100:2473-6. https://doi.org/10.1161/01.CIR.100.25.2473
  7. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, adipocyte-derived plasma protein, inhibits endothelial NF-kB signaling through cAMP-dependent pathway. Circulation 2000;102:1296-301. https://doi.org/10.1161/01.CIR.102.11.1296
  8. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimonura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipocyte specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79-83. https://doi.org/10.1006/bbrc.1999.0255
  9. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentration of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;20:1595-9. https://doi.org/10.1161/01.ATV.20.6.1595
  10. Adamczak M, Wiecek A, Funahashi T, Chudek J, Kokot F, Matsuzawa Y. Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens 2003;16:72-5. https://doi.org/10.1016/S0895-7061(02)03197-7
  11. Lee JW. Pulse pressure and systolic blood pressure. Korean Circ J 2002;32:293-8. https://doi.org/10.4070/kcj.2002.32.4.293
  12. Cuspidi C, Lonati L, Macca G, Sampieri L, Fusi V, Severgnini B, Salerno M, Michev I, Rocanova JI, Leonetti G, Zanchetti A. Cardiovascular risk stratification in hypertensive patients: impact of echocardiography and carotid ultrasonography. J Hypertens 2001;19:375-80. https://doi.org/10.1097/00004872-200103000-00004
  13. Levy D, Lahib SB, Anderson KM, Christianzen JC, Kannel WB, Castelli WP. Determinants of sensitivity and specificity of electrocardiographic criteria for left ventricular hypertrophy. Circulation 1990;81:815-20. https://doi.org/10.1161/01.CIR.81.3.815
  14. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes. FEBS Lett 2001;507:142-6. https://doi.org/10.1016/S0014-5793(01)02960-X
  15. Julius S, Valentini M, Palatini P. Overweight and hypertension: a 2-way street? Hypertension 2000;35:807-13. https://doi.org/10.1161/01.HYP.35.3.807
  16. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001;103:1057-63. https://doi.org/10.1161/01.CIR.103.8.1057
  17. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M, Okamoto Y, Nagaretani H, Nishizawa H, Kishida K, Komuro R, Ouchi N, Kihara S, Nagai R, Funahashi T, Matsuzawa Y. Role of adiponectin in preventing vascular stenosis: the missing link of adipo-vascular axis. J Biol Chem 2002;277:37487-91. https://doi.org/10.1074/jbc.M206083200
  18. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100:2473-6. https://doi.org/10.1161/01.CIR.100.25.2473