Soil $CO_{2}$ Evolution in Quercus vahabilis and Q. mongolica Forestsin Chunchon, Kangwon Province

江原春川地域의 굴참나무林과 신갈나무林內 土壤 $CO_{2}$의 發生

Yi, Myong-Jong
이명종

  • Published : 2003.09.30

Abstract

Infrared gas analysis (IRGA) method was used to measure soil COz evolution at the soil surface in threenatural deciduous oak forests (Quercus mongoIica Fish. stand and two Q. variabils Bl. stands) inChunchon, Kangwon Province. Soil moisture and soil temperature were measured concurrently with soilCOs evolution. There were strong positive correlations of soil COz evolution with soil temperature in allstudy stands, but no significant correlations between soil moisture and soil CO evolution The seasonalfluctuations in soil COa evolution increasing in summer and decreasing in winter, corresponded to changesin the soil temperature. Peaks in seasonal soil COz evolution occured in July and August. Annual meansoil COa evolution ranged from 0.51-0.52 g CO2/m'/hr for Q. variabilis stands to 0.57 g COz/m'/hr forthe Q. mongohca stand. The Qio values ranged from 3.9-4.0 for Q. variabitis stands to 5.3 for the Q.mongotica stand, In summer (June-August), soil CO2 evolution was greater in Q. mongotica stand thanin Q. variabil쓰 stands but the reverse was tme for the other seasons, In the study site, soil respirationduring summer was above 50% of annual total soil respiration (Q. variabit쓰 stands; 51.8-52.7%, Q.monghca stand; 58.8%). Annual total soil respiration was 31.45-34.84 t COz/ha/yr for the Q. variabit.그stands, and 34.17 t COz/ha/yr for Q. mongoIica stand, respectively.

강원도 춘천시 강원대학교 부속연습림의 신갈나무림 1개소와 굴참나무림 2개소에서 토양의 $CO_{2}$ 발생을적외선가스분석 (IRGA)법을 이용하여 측정하였다. 토양 $CO_{2}$ 발생 측정시 토양수분과 토양온도의 측정도동시에 수행하였다. 전 조사임분에서 토양$CO_{2}$발생은 토양온도와 높은 정의 상관관계가 있었으나 토양수분과는 유의성이 없었다. 토양 $CO_{2}$발생의 계절변화는 하절기에 증가한 후 동절기에 감소하는 경향을 보였으"1,7~8원에 연중 최고값을 나타냈다. 연평균 토양 $CO_{2}$발생속도는 굴참나무림의 0.51-0.52응 COz/m'/hr에서 신갈나무림의 0.57 g COa/m'/hr의 범위였다. Qio 값은 굴참나무림에서 3.9-4.0, 신갈나무림에서는5.3이었다. 하절기 (6-8월)의 토양 $CO_{2}$ 발생은 굴참나무림보다 신갈나무림에서 더욱 높았으나, 그 밖의계절에는 신갈나무림에서 낮았다. 모든 임분에서 하절기에 토양호흠량이 가장 많았으며, 연간 총 호흡량가운데 50% 이상 (굴참나무림 : 51.8-52.7%, 신갈나무림 :58.8%)을 차지했다. 연간 총 토양호흡량은 굴참나무 두 임분과 신갈나무림에서 각각 31.45-34.84 t $CO_{2}$/ha/yr 및 34.17 t $CO_{2}$/ha/yr 이었다.

Keywords

References

  1. 손요환 ·김현우. 1996. 리기다소나무와 낙엽송 인공조림지내 토양발생 이산화탄소에 판한 연구. 한국임학회지 85(3) : 496-50
  2. 이윤영 · 문형태. 2001. 상수리나무림의 토양호흡에 관한 연구. 한국생태학회지 24(3) : 141-147
  3. 황재홍 ·손요환. 2002. 리기다소나무와 낙엽송 임분에서 간벌, 석회시비 및 낙엽층 처리가 토양발생 이산화탄소 및 낙엽분해에 미치는 영향. 한국임학회지 91(4) : 471-479
  4. Anderson, J. M. 1973. Carbon dioxide evo1u-tion from two temperate deciduous woodland soils. Journal of Applied Ecology 10 : 361-378 https://doi.org/10.2307/2402287
  5. Barnes, B. V., D. R. Zak, S. R. Denton and S. H. Spurr. 1998. Forest Ecology. 4th ed. Wiley. New York. pp.774
  6. Bekku, Y., H. Koizumi, T. Oikawa and J. Iwaki. 1997. Examination of four methods for measuring soil respiration. Applied Soil Ecology 5 : 247-254 https://doi.org/10.1016/S0929-1393(96)00131-X
  7. Dulohery, C. J., L. A. Morris and R. Lawrance. 1996. Assessing forest soil distur-bance through biogenic aas fluxes. Soil Science Society of American Journal 60 : 291-298 https://doi.org/10.2136/sssaj1996.03615995006000010045x
  8. Edwards, N. T. 1982. The use of soda-lime for measuring respiration rates in terrestrial systems. Pedobiologia 23 : 321-330
  9. Edwards, N. T. andB.M. Ross-Todd. 1983. Soil carbon dynamics in a mixed deciduous forest following clear cutting with and without residue removal. Soil Science Society of American Journal 47 : 1014-1021 https://doi.org/10.2136/sssaj1983.03615995004700050035x
  10. Ellert, B. H. and E. G. Gregorich. 1995. Management-induced changes in the actively cycline fraction of soil oreanic matter. Pages 119-138 in W.W. Mcfee and J.M. Kellg, eds. Carbon Forms and Functions in Forest Soil. Soil Science Society of America
  11. Eric, A. D., E. Belk and R. D. Boone. 1998. Soil water content and temperature as indepen-dent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4(2) : 217-227 https://doi.org/10.1046/j.1365-2486.1998.00128.x
  12. Fernandez, I. J., Y. Son, C. R. Kraske, L. E. Rustad and M. B. David. 1993. Soil carbon dioxide characteristics under different forest types and after harvest. Soil Science Society of American Journal 57 : 1115-1121 https://doi.org/10.2136/sssaj1993.03615995005700040039x
  13. Freijer, J. I. and W. Bouter. 1991. A Com-parison of field methods for measuring soil carbon dioxide evolution : experiments and simulation. Plant and Soil 135 : 133-142 https://doi.org/10.1007/BF00014786
  14. Grogan, P. 1998. $CO_2$ flux measurement using soda lime : correction for water formed during $CO_2$ adsorption. Ecology 79(4) : 1467-1468 https://doi.org/10.1890/0012-9658(1998)079[1467:CFMUSL]2.0.CO;2
  15. Hanson, P. J., S. D. Wullschleger, S. A. Bohlman and D. E. Todd. 1993. Seasonal and topographic pattems of forest floor $CO_2$ efflux from an upland oak forest. Tree Physiology 13: 1-15 https://doi.org/10.1093/treephys/13.1.1
  16. Landsberg, J. J. and S. T. Gower. 1997. Ap-plication of Physiological Ecology to Forest man-agement. Academic Press. New York. 354pp
  17. Le Dantec, V., D. Epron and E. Dufrene. 1999. Soil $CO_2$ efflux in a beech forest : comparison of two closed dynamic systems. Plant and Soil 214 : 125-132 https://doi.org/10.1023/A:1004737909168
  18. Lundegardh, H. 1927. Carbon dioxide evo1u-tion of soil and crop growth. Soil Science 23 : 417-450 https://doi.org/10.1097/00010694-192706000-00001
  19. Moon, H. S., S. Y. Jung and S. C. Hong. 2001. Rate of soil respiration at blank locust (Robinia Pseudoacasid) stands in Jinju area Korea Journal of Ecology 24(6) : 371-376
  20. Nakane, K. 1995. Soil carbon cycling in a Japanese cedar (Cryptomena Japonica) Planta-tion. Forest Ecology and Management 72 : 185-197 https://doi.org/10.1016/0378-1127(94)03465-9
  21. Nay, S. M., K. G. Mattson and B. T. Bormann. 1994. Biases of chamber methods for measuring soil $CO_2$ efflux demonstrated with a laboratory apparatus. Ecology 75 : 2460-2463 https://doi.org/10.2307/1940900
  22. Oikawa, T. 1991. Increase of atmospheric $CO_2$ concentration and biosphere. Journal of Agri-cultural Meteorology 47 : 191-194 https://doi.org/10.2480/agrmet.47.191
  23. Pongracic, S., M. U. F. Krischbaum and R. J. Raison. 1997. Comparison of soda lime and infrared gas analysis techniques for in situ measurement of forest soil respiration. Cana-dian Joumal of Forest Research 27 : 1890-1895 https://doi.org/10.1139/cjfr-27-11-1890
  24. Raich, J. W. and W. H. Schlesinger. 1992. The global carbon dioxide flux in soil respi-ration and its relationship to vegetation and climate. Tellus 44B : 81-99
  25. Savage, K. E. and E. A. Davidson. 2001. Interannual variation of soil respiration in two New England forest. Global Biogeochemical Cycles 15(2) : 337-350 https://doi.org/10.1029/1999GB001248
  26. SAS. 1988. SAS/STAT User's Guide. 6.03ed. SAS Institute Inc., Cary, NC
  27. Singh, J. S. and S. R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Botanical Review 43 : 449-528 https://doi.org/10.1007/BF02860844
  28. Sommerfeld, R. A., A. R. Moiser and R. C. Musselman. 1993. $CO_2$ NH< and NaO flux through a Wyoming snow pack and implication for global budgets. Nature 361 : 140-142 https://doi.org/10.1038/361140a0
  29. Son, Y., G. Lee and J. Y. Hong. 1994. Soil carbon dioxide evolution in three deciduous tree plantation. Korean Joumal of Soil Scienceand Fertilizer 27(4) : 290-295
  30. Striegl, R. G and K. P. Wickland. 1998. Effects of a clear-cut harvest on soil respiration in a jack pine-lichen woodland. Canadian Joumal of Forest Research 28 : 534-539 https://doi.org/10.1139/cjfr-28-4-534
  31. Witkamp, M. 1966. Rates of carbon dioxide evolution from the forest floor. Ecology 47(3) :492-494 https://doi.org/10.2307/1932992