Characterization and Prevalence of Escherichia coli and Klebsiella pneumoniae Isolates Producing an Extended-Spectrum $\beta$-Lactamase from Korean Hospitals

전국 주요 병원에서 분리된 Escherichia coli와 Klebsiella pneumoniae의 Extended-Spectrum $\beta$-Lactamase 생성 현황과 특성

Park, Jeong-Ho;Lee, Sang-Hee;Jeong, Seok-Hoon;Kim, Bit-Na;Kim, Kyung-Bo;Yoon, Jong-Deuk;Jeon, Byung-Chan
박정호;이상희;정석훈;김빛나;김경보;윤종득;전병찬

  • Published : 20030000

Abstract

Background : The aim of this study was to survey the nationwide susceptibilities of E. coli and K. pneumoniae against third generation cephalosporins and aztreonam in order to determine the prevalence of extended-spectrum $\beta$-lactamase (ESBL)-producers and to characterize genotypes of ESBLs. Methods : A total of 6,567 E. coli and 2,652 K. pneumoniae non-duplicate strains were isolated from 13 hospitals in April to June 2002. Antimicrobial susceptibilities were tested by the disk diffusion method. Twenty isolates of E. coli and 20 K. pneumoniae were collected from each hospital. ESBL production was determined by a double-disk synergy test. The ceftazidime-resistance of the ESBL-producers was transferred to azide-resistant E. coli J53 by conjugation. MICs of $\beta$-lactam antibiotics to transconjugants were determined by the agar dilution method. Searches for $bla_{TEM}$, $bla_{SHV}$, $bla_{CTX-M}$ and $bla_{CMY}$ genes in transconjugants were performed by PCR amplification. Results : Eighty-nine percents of E. coli and 71% of K. pneumoniae isolates were susceptible to ceftazidime. Nine percents of E. coli (23/249) and 30% (78/260) of K. pneumoniae isolates showed positive results in the double-disk synergy test. Ceftazidime-resistance of 13 (57%) E. coli and 42 (53%) K. pneumoniae isolates were transferred to E. coli J53 by conjugation. Among 55 transconjugants, 46 strains were resistant to ceftazidime, while only 16 strains were resistant to cefotaxime. Twelve transconjugants were also resistant to cefoxitin and cefotetan. Banding patterns of PCR amplification showed that the $bla_{TEM}$, $bla_{SHV}$, $bla_{CTX-M}$ and $bla_{CMY}$ genes were harboured by 44, 39, 4 and 5 transconjugants, respectively. Conclusions : E. coli and K. pneumoniae isolates producing TEM-, SHV-type, or CTX-M-type ESBLs are wide spread in Korean hospitals. The spread of ESBL genes could compromise the future usefulness of 3rd generation cephalosporins and aztreonam for the treatment of E. coli and K. pneumoniae infections.

목적 : 본 연구에서는 전국의 병원에서 분리되는 E. coli와 K. pneumoniae를 대상으로 제 3세대 cephalosporin과 aztreonam에 대한 내성 현황을 조사하고, ESBL 생성 현황 및 내성 기전을 조사하고자 하였다. 방법 : 2002년 4-6월에 전국 13개 병원에서 분리된 E. coli 6,567주와 K. pneumoniae 2,652주의 디스크 확산법에 의한 항균제 감수성 시험 결과를 조사하였다. 또한 병원당 E. coli와 K. pneumoniae 각각 20주를 수집하여서 double disk synergy 시험으로 ESBL 생성을 조사하였다. ESBL 생성 균주의 ceftazidime 내성을 접합으로 azide 내성인 E. coli J53에게 전달하였다. Transconjugant를 대상으로 한천희석법으로 $\beta$-lactam 항균제의 최소억제 농도를 측정하였으며, 중합연쇄반응으로 $bla_{TEM}$, $bla_{SHV}$, $bla_{CTX-M}$$bla_{CMY}$ 유전자를 검출하였다. 결과 : E. coli와 K. pneumoniae의 ceftazidime에 대한 감수성 비율은 각각 89%와 71%이었다. 13개 병원에서 수집된 E. coli 249주와 K. pneumoniae 260주 중 E. coli 23주(9%)와 K. pneumoniae 78주(30%)가 double disk synergy 양성이었다. E. coli 13주(57%)와 K. pneumoniae 42주(53%)의 ceftazidime 내성이 접합에 의해서 E. coli J53으로 전달되었다. Transconjugant 55주 중 42주가 ceftazidime에 내성인데 반하여 cefotaxime에 내성인 transconjugant는 16주에 불과하였다. Transconjugant 12주는 cefoxitin과 cefotetan에도 내성이었다. Transconjugant 44주에서 $bla_{TEM}$, 39주에서 $bla_{SHV}$, 4주에서 $bla_{CTX-M}$ 유전자가 검출되었으며, 5주는 $bla_{CMY}$ 유전자를 동시에 지니고 있었다. 결론 : 국내 병원에서 분리되는 E. coli나 K. pneumoniae 중 제 3세대 cephalosporin 혹은 aztreonam에 내성인 균주가 흔하며, 이들 균주 대부분은 TEM 혹은 SHV형 ESBL 생성에 의해서 내성을 획득하지만, CTX-M형 혹은 CMY형 $\beta$-lactamase를 지닌 균주도 존재함을 확인할 수 있었다. ESBL 유전자의 확산은 제 3세대 cephalosporin이나 aztreonam의 E. coli 혹은 K. pneu-moniae 감염증에 대한 치료 유용성을 제한할 것으로 우려된다.

Keywords

References

  1. Livermore DM. $\beta$-lactamase-mediated resistance and opportunities for its control. J Antimicrob Chemother 1998; 41(Suppl. D): 25-41
  2. Waxman DJ and Strominger JL. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem 1983; 52: 825- 69 https://doi.org/10.1146/annurev.bi.52.070183.004141
  3. 정윤섭 및 이경원. 그람양성세균과 그람음성구균의 항균제 내성. 제 1판. 서울: 서흥출판사, 1998: 141-70
  4. Jacoby GA and Medeiros AA. More extanded-spectrum $\beta$-lactamases. Antimicrob Agents Chemother 1991; 35: 1697-704 https://doi.org/10.1128/AAC.35.9.1697
  5. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983; 11: 315-7 https://doi.org/10.1007/BF01641355
  6. Arlet G, Sanson-le Pors MJ, Rouveau M, Fournier G, Marie O, Schlemmer B, et al. Outbreak of nosocomial infections due to Klebsiella pneumoniae producing SHV-4 $\beta$-lactamase. Eur J Clin Microbiol Infect Dis 1990; 9: 797-803 https://doi.org/10.1007/BF01967377
  7. Naumovski L, Quinn JP, Miyashiro D, Patel M, Bush K, Singer SB. Outbreak of ceftazidime resistance due to a novel extended-spectrum $\beta$-lactamase in isolates from cancer patients. Antimicrob Agents Chemother 1992; 36: 1991-6 https://doi.org/10.1128/AAC.36.9.1991
  8. Bauernfeind A, Rosenthal E, Eberlein E, Holley M, Schweighart S. Spread of Klebsiella pneumoniae producing SHV-5 beta-lactamase among hospitalized patients. Infection 1993; 21: 18-22 https://doi.org/10.1007/BF01739303
  9. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for $\beta$-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39: 1211-33 https://doi.org/10.1128/AAC.39.6.1211
  10. Jacoby GA. Genetics of extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis 1994; 13(Suppl. 1): 2-11 https://doi.org/10.1007/BF02390679
  11. Phillippon A, Arlet G, Lagrange PH. Origin and impact of plasmidmediated extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis 1994; 13(Suppl. 1): 17-29 https://doi.org/10.1007/BF02390681
  12. Bradford PA. Extended-spectrum $\beta$-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14: 933-51 https://doi.org/10.1128/CMR.14.4.933-951.2001
  13. Bauernfeind A, Stemplinger I, Jungwirth R, Ernst S, Casellas JM. Sequences of beta-lactamase genes encoding CTX-M-1 (MEN-1) and CTX- M-2 and relationship of their amino acid sequences with those of other beta- lactamases. Antimicrob Agents Chemother 1996; 40: 509-13
  14. Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. Identification of CTX-M-14 extended-spectrum $\beta$-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol 2001; 39: 3747-9 https://doi.org/10.1128/JCM.39.10.3747-3749.2001
  15. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility testing. Tenth informational supplement, M100-S10 (M2). Wayne, Pa: National Committee for Clinical Laboratory Standards, 2000
  16. Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broadspectrum $\beta$-lactamases conferring transferable resistance to newer $\beta$-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 1988; 10: 867-78 https://doi.org/10.1093/clinids/10.4.867
  17. Jacoby GA and Han P. Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 1996; 34: 908-11
  18. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically-5th edition: approved standards. M7-A5. Wayne, Pa: National Committee for Clinical Laboratory Standards, 2000
  19. Lee SH, Jeong SH, Lee KJ. Evolution of TEM $\beta$-lactamase genes identified by PCR with newly designed primers in Korean clinical isolates. Clin Microbiol Infect 2001; 7: 98-100 https://doi.org/10.1046/j.1469-0691.2001.00202.x
  20. Jones RN, Pfaller MA, Doern GV, Erwin ME, Hollis RJ. Antimicrobial activity and spectrum investigation of eight broad-spectrum $\beta$-lactam drugs: a 1997 surveillance trial in 102 medical centers in the United States. Cefepime Study Group. Diagn Microbiol Infect Dis 1998; 30: 215-28
  21. 송원근, 이경원, 김선주, 정석훈, 장철훈, 신혜정 등. 전국 12개 병원환자에서 분리된 extended-spectrum $\beta$-lactamase 생성 Escherichia coli와 Klebsiella pneumoniae. 대한화학요법학회지 2000; 18: 401-10
  22. Stobberingh EE, Arends J, Hoogkamp-Korstanje JA, Goessens WH, Visser MR, Buiting AG, et al. Occurrence of extended-spectrum $\beta$-lactamases (ESBL) in Dutch hospitals. Infection 1999; 27: 348-54 https://doi.org/10.1007/s150100050041
  23. Bauernfeind A, Chong Y, Schweighart S. Extended broad spectrum $\beta$-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 1989; 17: 316-21 https://doi.org/10.1007/BF01650718
  24. Lee SH, Kim JY, Lee GS, Cheon SH, An YJ, Jeong SH, et al. Characterization of blaCMY-11, an AmpC-type plasmid-mediated $\beta$-lactamase gene in a Korean clinical isolate of Escherichia coli. J Antimicrob Chemother 2002; 49: 269-73 https://doi.org/10.1093/jac/49.2.269